scispace - formally typeset
Search or ask a question
Topic

Nestin

About: Nestin is a research topic. Over the lifetime, 3234 publications have been published within this topic receiving 124225 citations.


Papers
More filters
Journal ArticleDOI
23 Feb 1990-Cell
TL;DR: The predicted amino acid sequence of the nestin gene product shows that nestin defines a distinct sixth class of intermediate filament protein, extending a model in which transitions in intermediate filament gene expression reflect major steps in the pathway of neural differentiation.

3,250 citations

Journal ArticleDOI
12 Aug 2010-Nature
TL;DR: It is demonstrated that mesenchymal stem cells (MSCs), identified using nestin expression, constitute an essential HSC niche component and are indicative of a unique niche in the bone marrow made of heterotypic stem-cell pairs.
Abstract: The cellular constituents forming the haematopoietic stem cell (HSC) niche in the bone marrow are unclear, with studies implicating osteoblasts, endothelial and perivascular cells. Here we demonstrate that mesenchymal stem cells (MSCs), identified using nestin expression, constitute an essential HSC niche component. Nestin(+) MSCs contain all the bone-marrow colony-forming-unit fibroblastic activity and can be propagated as non-adherent 'mesenspheres' that can self-renew and expand in serial transplantations. Nestin(+) MSCs are spatially associated with HSCs and adrenergic nerve fibres, and highly express HSC maintenance genes. These genes, and others triggering osteoblastic differentiation, are selectively downregulated during enforced HSC mobilization or beta3 adrenoreceptor activation. Whereas parathormone administration doubles the number of bone marrow nestin(+) cells and favours their osteoblastic differentiation, in vivo nestin(+) cell depletion rapidly reduces HSC content in the bone marrow. Purified HSCs home near nestin(+) MSCs in the bone marrow of lethally irradiated mice, whereas in vivo nestin(+) cell depletion significantly reduces bone marrow homing of haematopoietic progenitors. These results uncover an unprecedented partnership between two distinct somatic stem-cell types and are indicative of a unique niche in the bone marrow made of heterotypic stem-cell pairs.

3,012 citations

Journal ArticleDOI
01 Sep 2002-Glia
TL;DR: The data suggest that the latent critical stem cell characteristics can be epigenetically induced by growth conditions not only in cells from neurogenic regions of normal CNS but also in cells in cortical glial tumors.
Abstract: Neural stem cells from neurogenic regions of mammalian CNS are clonogenic in an in vitro culture system exploiting serum and anchorage withdrawal in medium supplemented with methyl cellulose and the pleiotropic growth factors EGF, FGF2, and insulin. The aim of this study was to test whether cortical glial tumors contain stem-like cells capable, under this culture system, of forming clones showing intraclonal heterogeneity in the expression of neural lineage-specific proteins. The high frequencies of clone-forming cells (about 0.1-10 x 10(-3)) in clinical tumor specimens with mutated p53, and in neurogenic regions of normal human CNS, suggest that the ability to form clones in this culture system is induced epigenetically. RT-PCR analyses of populations of normal brain- and tumor-derived sister clones revealed transcripts for nestin, neuron-specific enolase, and glial fibrillary acidic protein (GFAP). However, the tumor-derived clones were different from clones derived from neurogenic regions of normal brain in the expression of transcripts specific for genes associated with neural cell fate determination via the Notch-signaling pathway (Delta and Jagged), and cell survival at G2 or mitotic phases (Survivin). Moreover, the individual glioma-derived clones contain cells immunopositive separately for GFAP or neuronal beta-III tubulin, as well as single cells coexpressing both glial and neuronal markers. The data suggest that the latent critical stem cell characteristics can be epigenetically induced by growth conditions not only in cells from neurogenic regions of normal CNS but also in cells from cortical glial tumors. Moreover, tumor stem-like cells with genetically defective responses to epigenetic stimuli may contribute to gliomagenesis and the developmental pathological heterogeneity of glial tumors.

985 citations

Journal ArticleDOI
TL;DR: The discovery of BrdU-labeled neurons suggests that new neurons are recruited early from the pool of proliferating progenitor cells and lead to a lasting effect of adult neurogenesis.
Abstract: New neurons are continually generated in the adult hippocampus, but the important question, whether adult neurogenesis is transient or leads to the lasting presence of new neurons, has not yet been answered. Dividing cells were labeled with bromodeoxyuridine (BrdU) and were investigated by means of immunofluorescence and confocal microscopy at several time-points 1 day to 11 months thereafter. BrdU-labeled neurons remained stable in number and in their relative position in the granule cell layer over at least 11 months. This finding implies that the addition of new neurons is not transient and that their final number and localization are determined early. By contrast, expression of immature markers β-III-tubulin and doublecortin in BrdU-labeled cells, peaked early after division and was not detectable after 4 weeks. In transgenic mice expressing enhanced green fluorescent protein under the nestin promoter none of the BrdU/nestin-positive cells early after division expressed the mature marker NeuN, confirming that no dividing neurons were detected. These new data suggest that new neurons are recruited early from the pool of proliferating progenitor cells and lead to a lasting effect of adult neurogenesis.

962 citations

Journal ArticleDOI
TL;DR: Following neuronal induction of murine and human ADAS cells, Western blot analysis confirmed GFAP, nestin, and NeuN protein expression and Pretreatment with EGF and basic FGF augmented the neuronal differentiation of huADAS cells.

811 citations


Network Information
Related Topics (5)
Apoptosis
115.4K papers, 4.8M citations
87% related
Cellular differentiation
90.9K papers, 6M citations
85% related
Cell culture
133.3K papers, 5.3M citations
83% related
Stem cell
129.1K papers, 5.9M citations
83% related
Signal transduction
122.6K papers, 8.2M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023136
2022157
2021113
2020133
2019132
2018134