scispace - formally typeset
Search or ask a question
Topic

Network Access Control

About: Network Access Control is a research topic. Over the lifetime, 9270 publications have been published within this topic receiving 192271 citations. The topic is also known as: NAC.


Papers
More filters
Book
19 Aug 1998
TL;DR: The new edition of William Stallings' Cryptography and Network Security: Principles and Practice, 5e is a practical survey of cryptography and network security with unmatched support for instructors and students.
Abstract: William Stallings' Cryptography and Network Security: Principles and Practice, 5e is a practical survey of cryptography and network security with unmatched support for instructors and students. In this age of universal electronic connectivity, viruses and hackers, electronic eavesdropping, and electronic fraud, security is paramount. This text provides a practical survey of both the principles and practice of cryptography and network security. First, the basic issues to be addressed by a network security capability are explored through a tutorial and survey of cryptography and network security technology. Then, the practice of network security is explored via practical applications that have been implemented and are in use today. An unparalleled support package for instructors and students ensures a successful teaching and learning experience. The new edition has been updated to include coverage of the latest topics including expanded coverage of block cipher modes of operation, including authenticated encryption; revised and expanded coverage of AES; expanded coverage of pseudorandom number generation; new coverage of federated identity, HTTPS, Secure Shell (SSH) and wireless network security; completely rewritten and updated coverage of IPsec; and a new chapter on legal and ethical issues.

3,787 citations

Journal Article
TL;DR: This chapter identifies the vulnerabilities associated with the operational paradigms currently employed by Wireless Sensor Networks and a framework for implementing security in WSNs, which identifies the security measures necessary to mitigate the identified vulnerabilities.
Abstract: This chapter identifies the vulnerabilities associated with the operational paradigms currently employed by Wireless Sensor Networks. A survey of current WSN security research is presented. The security issues of Mobile Ad-Hoc Networks and infrastructure supported wireless networks are briefly compared and contrasted to the security concerns of Wireless Sensor Networks. A framework for implementing security in WSNs, which identifies the security measures necessary to mitigate the identified vulnerabilities is defined.

2,939 citations

Proceedings ArticleDOI
16 Jul 2001
TL;DR: A suite of security building blocks optimized for resource-constrained environments and wireless communication, and shows that they are practical even on minimal hardware: the performance of the protocol suite easily matches the data rate of the network.
Abstract: As sensor networks edge closer towards wide-spread deployment, security issues become a central concern. So far, much research has focused on making sensor networks feasible and useful, and has not concentrated on security.We present a suite of security building blocks optimized for resource-constrained environments and wireless communication. SPINS has two secure building blocks: SNEP and mTESLA SNEP provides the following important baseline security primitives: Data confidentiality, two-party data authentication, and data freshness. A particularly hard problem is to provide efficient broadcast authentication, which is an important mechanism for sensor networks. mTESLA is a new protocol which provides authenticated broadcast for severely resource-constrained environments. We implemented the above protocols, and show that they are practical even on minimal hardware: the performance of the protocol suite easily matches the data rate of our network. Additionally, we demonstrate that the suite can be used for building higher level protocols.

2,703 citations

Book
01 Jun 1998

2,624 citations

Proceedings ArticleDOI
03 Nov 2004
TL;DR: TinySec is introduced, the first fully-implemented link layer security architecture for wireless sensor networks, and results on a 36 node distributed sensor network application clearly demonstrate that software based link layer protocols are feasible and efficient, adding less than 10% energy, latency, and bandwidth overhead.
Abstract: We introduce TinySec, the first fully-implemented link layer security architecture for wireless sensor networks. In our design, we leverage recent lessons learned from design vulnerabilities in security protocols for other wireless networks such as 802.11b and GSM. Conventional security protocols tend to be conservative in their security guarantees, typically adding 16--32 bytes of overhead. With small memories, weak processors, limited energy, and 30 byte packets, sensor networks cannot afford this luxury. TinySec addresses these extreme resource constraints with careful design; we explore the tradeoffs among different cryptographic primitives and use the inherent sensor network limitations to our advantage when choosing parameters to find a sweet spot for security, packet overhead, and resource requirements. TinySec is portable to a variety of hardware and radio platforms. Our experimental results on a 36 node distributed sensor network application clearly demonstrate that software based link layer protocols are feasible and efficient, adding less than 10% energy, latency, and bandwidth overhead.

1,751 citations


Network Information
Related Topics (5)
Wireless ad hoc network
49K papers, 1.1M citations
84% related
Key distribution in wireless sensor networks
59.2K papers, 1.2M citations
84% related
Wireless sensor network
142K papers, 2.4M citations
84% related
Wireless network
122.5K papers, 2.1M citations
84% related
Network packet
159.7K papers, 2.2M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202321
202263
202112
202035
201957
201879