scispace - formally typeset
Search or ask a question
Topic

Network planning and design

About: Network planning and design is a research topic. Over the lifetime, 12393 publications have been published within this topic receiving 229776 citations. The topic is also known as: network design.


Papers
More filters
Journal ArticleDOI
05 Mar 2001-Chaos
TL;DR: The engineered control of cellular function through the design of synthetic genetic networks is becoming plausible, and a naturally occurring network can be used as a parts list for artificial network design, and how model formulation leads to computational and analytical approaches relevant to nonlinear dynamics and statistical physics are shown.
Abstract: The engineered control of cellular function through the design of synthetic genetic networks is becoming plausible. Here we show how a naturally occurring network can be used as a parts list for artificial network design, and how model formulation leads to computational and analytical approaches relevant to nonlinear dynamics and statistical physics. We first review the relevant work on synthetic gene networks, highlighting the important experimental findings with regard to genetic switches and oscillators. We then present the derivation of a deterministic model describing the temporal evolution of the concentration of protein in a single-gene network. Bistability in the steady-state protein concentration arises naturally as a consequence of autoregulatory feedback, and we focus on the hysteretic properties of the protein concentration as a function of the degradation rate. We then formulate the effect of an external noise source which interacts with the protein degradation rate. We demonstrate the utility of such a formulation by constructing a protein switch, whereby external noise pulses are used to switch the protein concentration between two values. Following the lead of earlier work, we show how the addition of a second network component can be used to construct a relaxation oscillator, whereby the system is driven around the hysteresis loop. We highlight the frequency dependence on the tunable parameter values, and discuss design plausibility. We emphasize how the model equations can be used to develop design criteria for robust oscillations, and illustrate this point with parameter plots illuminating the oscillatory regions for given parameter values. We then turn to the utilization of an intrinsic cellular process as a means of controlling the oscillations. We consider a network design which exhibits self-sustained oscillations, and discuss the driving of the oscillator in the context of synchronization. Then, as a second design, we consider a synthetic network with parameter values near, but outside, the oscillatory boundary. In this case, we show how resonance can lead to the induction of oscillations and amplification of a cellular signal. Finally, we construct a toggle switch from positive regulatory elements, and compare the switching properties for this network with those of a network constructed using negative regulation. Our results demonstrate the utility of model analysis in the construction of synthetic gene regulatory networks.

280 citations

Journal ArticleDOI
TL;DR: In this article, a robust network design model for the supply of blood during and after disasters is presented, which can assist in blood facility location and allocation decisions for multiple post-disaster periods.
Abstract: This paper presents a robust network design model for the supply of blood during and after disasters. A practical optimization model is developed that can assist in blood facility location and allocation decisions for multiple post-disaster periods. The application of the proposed model is investigated in a case problem where real data is utilized to design a network for emergency supply of blood during potential disasters. Our analysis on the tradeoff between solution robustness and model robustness arrives at important practical insights. The performance of the proposed ‘robust optimization’ approach is also compared with that of an ‘expected value’ approach.

280 citations

Proceedings ArticleDOI
17 Aug 2014
TL;DR: FireFly is presented, an inter-rack network solution that pushes DC network design to the extreme on three key fronts: (1) all links are reconfigurable; (2) all Links are wireless; and (3) non top-of-rack switches are eliminated altogether.
Abstract: Conventional static datacenter (DC) network designs offer extreme cost vs. performance tradeoffs---simple leaf-spine networks are cost-effective but oversubscribed, while "fat tree"-like solutions offer good worst-case performance but are expensive. Recent results make a promising case for augmenting an oversubscribed network with reconfigurable inter-rack wireless or optical links. Inspired by the promise of reconfigurability, this paper presents FireFly, an inter-rack network solution that pushes DC network design to the extreme on three key fronts: (1) all links are reconfigurable; (2) all links are wireless; and (3) non top-of-rack switches are eliminated altogether. This vision, if realized, can offer significant benefits in terms of increased flexibility, reduced equipment cost, and minimal cabling complexity. In order to achieve this vision, we need to look beyond traditional RF wireless solutions due to their interference footprint which limits range and data rates. Thus, we make the case for using free-space optics (FSO). We demonstrate the viability of this architecture by (a) building a proof-of-concept prototype of a steerable small form factor FSO device using commodity components and (b) developing practical heuristics to address algorithmic and system-level challenges in network design and management.

276 citations

Journal ArticleDOI
TL;DR: A combined facility location/network design problem in which facilities have constraining capacities on the amount of demand they can serve is introduced, and a mixed integer programming formulation of the problem is presented to strengthen its LP relaxation.

275 citations

Journal ArticleDOI
Alysson M. Costa1
TL;DR: Network design problems concern the selection of arcs in a graph in order to satisfy, at minimum cost, some flow requirements, usually expressed in the form of origin-destination pair demands.

275 citations


Network Information
Related Topics (5)
Optimization problem
96.4K papers, 2.1M citations
85% related
Network packet
159.7K papers, 2.2M citations
84% related
Wireless network
122.5K papers, 2.1M citations
84% related
Node (networking)
158.3K papers, 1.7M citations
83% related
Wireless
133.4K papers, 1.9M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202390
2022195
2021432
2020493
2019570
2018573