scispace - formally typeset
Search or ask a question
Topic

Network planning and design

About: Network planning and design is a research topic. Over the lifetime, 12393 publications have been published within this topic receiving 229776 citations. The topic is also known as: network design.


Papers
More filters
Proceedings ArticleDOI
19 Apr 2009
TL;DR: This paper remodel the broadcast problem with active/dormant cycles in this new context, seeking a balance between efficiency and latency with coverage guarantees, and demonstrates that this problem can be translated into a graph equivalence, and develops a centralized optimal solution.
Abstract: Broadcast is one of the most fundamental services in wireless sensor networks (WSNs). It facilitates sensor nodes to propagate messages across the whole network, serving a wide range of higher-level operations and thus being critical to the overall network design. A distinct feature of WSNs is that many nodes alternate between active and dormant states, so as to conserve energy and extend the network lifetime. Unfortunately, the impact of such cycles has been largely ignored in existing broadcast implementations that adopt the common assumption of all nodes being active all over the time. In this paper, we revisit the broadcast problem with active/dormant cycles. We show strong evidence that conventional broadcast approaches will suffer from severe performance degradation, and, under low duty-cycles, they could easily fail to cover the whole network in an acceptable timeframe. To this end, we remodel the broadcast problem in this new context, seeking a balance between efficiency and latency with coverage guarantees. We demonstrate that this problem can be translated into a graph equivalence, and develop a centralized optimal solution. It provides a valuable benchmark for assessing diverse duty-cycle-aware broadcast strategies. We then extend it to an efficient and scalable distributed implementation, which relies on local information and operations only, with built-in loss compensation mechanisms. The performance of our solution is evaluated under diverse network configurations. The results suggest that our distributed solution is close to the lower bounds of both time and forwarding costs, and it well resists to the network size and wireless loss increases. In addition, it enables flexible control toward the quality of broadcast coverage.

124 citations

Journal ArticleDOI
TL;DR: In this paper, the authors proposed a method to analyze and categorize wireless access points based on common usage characteristics that reflect real-world, placed-based behaviors and provide an instant survey of building use across the entire campus at a surprisingly fine-grained level.
Abstract: Researchers use eigendecomposition to leverage MIT's Wi-Fi network activity data and analyze to the physical environment. We proposed a method to analyze and categorize wireless access points based on common usage characteristics that reflect real-world, placed-based behaviors. It uses eigendecomposition to study the Wi-Fi network at the Massahusetts Institute of Technology (MIT), correlating data generated as a byproduct of network activity with the physical environment. Our approach provides an instant survey of building use across the entire campus at a surprisingly fine-grained level. The resulting eigenplaces have implications for reseach across a range of wireless technology as well as potential applications in network planning, traffic and tourism management, and even marketing.

124 citations

Journal ArticleDOI
TL;DR: It is proved that 3D k-covered WSNs can sustain a large number of sensor failures and relax some widely used assumptions in coverage and connectivity in WSNS, such as sensor homogeneity and unit sensing and communication model, so as to promote the practicality of the results in real-world scenarios.
Abstract: In a wireless sensor network (WSN), connectivity enables the sensors to communicate with each other, while sensing coverage reflects the quality of surveillance. Although the majority of studies on coverage and connectivity in WSNs consider 2D space, 3D settings represent more accurately the network design for real-world applications. As an example, underwater sensor networks require design in 3D rather than 2D space. In this paper, we focus on the connectivity and k-coverage issues in 3D WSNs, where each point is covered by at least k sensors (the maximum value of k is called the coverage degree). Precisely, we propose the Reuleaux tetrahedron model to characterize k-coverage of a 3D field and investigate the corresponding minimum sensor spatial density. We prove that a 3D field is guaranteed to be k-covered if any Reuleaux tetrahedron region of the field contains at least k sensors. We also compute the connectivity of 3D k-covered WSNs. Based on the concepts of conditional connectivity and forbidden faulty sensor set, which cannot include all the neighbors of a sensor, we prove that 3D k-covered WSNs can sustain a large number of sensor failures. Precisely, we prove that 3D k-covered WSNs have connectivity higher than their coverage degree k. Then, we relax some widely used assumptions in coverage and connectivity in WSNs, such as sensor homogeneity and unit sensing and communication model, so as to promote the practicality of our results in real-world scenarios. Also, we propose a placement strategy of sensors to achieve full k-coverage of a 3D field. This strategy can be used in the design of energy-efficient scheduling protocols for 3D k-covered WSNs to extend the network lifetime.

122 citations

Journal ArticleDOI
TL;DR: A novel particle swarm optimization (PSO) algorithm with a tentative reader elimination (TRE) operator to deal with RNP and results show that the proposed algorithm is capable of achieving higher coverage and using fewer readers than the other algorithms.
Abstract: The rapid development of radio frequency identification (RFID) technology creates the challenge of optimal deployment of an RFID network. The RFID network planning (RNP) problem involves many constraints and objectives and has been proven to be NP-hard. The use of evolutionary computation (EC) and swarm intelligence (SI) for solving RNP has gained significant attention in the literature, but the algorithms proposed have seen difficulties in adjusting the number of readers deployed in the network. However, the number of deployed readers has an enormous impact on the network complexity and cost. In this paper, we develop a novel particle swarm optimization (PSO) algorithm with a tentative reader elimination (TRE) operator to deal with RNP. The TRE operator tentatively deletes readers during the search process of PSO and is able to recover the deleted readers after a few generations if the deletion lowers tag coverage. By using TRE, the proposed algorithm is capable of adaptively adjusting the number of readers used in order to improve the overall performance of RFID network. Moreover, a mutation operator is embedded into the algorithm to improve the success rate of TRE. In the experiment, six RNP benchmarks and a real-world RFID working scenario are tested and four algorithms are implemented and compared. Experimental results show that the proposed algorithm is capable of achieving higher coverage and using fewer readers than the other algorithms.

122 citations

Journal ArticleDOI
01 Mar 2010
TL;DR: The main idea of MC-BFO is to extend the single population bacterial foraging algorithm to the interacting multi-colony model by relating the chemotactic behavior of single bacterial cell to the cell-to-cell communication of bacterial community.
Abstract: In order to obtain accurate and reliable network planning in the Radio Frequency Identification (RFID) communication system, the locations of readers and the associated values for each of the reader parameters have to be determined. All these choices must optimize a set of objectives, such as tag coverage, economic efficiency, load balance, and interference level between readers. This paper proposes a novel optimization algorithm, namely the multi-colony bacteria foraging optimization (MC-BFO), to solve complex RFID network planning problem. The main idea of MC-BFO is to extend the single population bacterial foraging algorithm to the interacting multi-colony model by relating the chemotactic behavior of single bacterial cell to the cell-to-cell communication of bacterial community. With this multi-colony cooperative approach, a suitable diversity in the whole bacterial community can be maintained. At the same time, the cell-to-cell communication mechanism significantly speeds up the bacterial community to converge to the global optimum. Then a mathematical model for planning RFID networks is developed based on the proposed MC-BFO. The performance of MC-BFO is compared to both GA and PSO on RFID network planning problem, demonstrating its superiority.

122 citations


Network Information
Related Topics (5)
Optimization problem
96.4K papers, 2.1M citations
85% related
Network packet
159.7K papers, 2.2M citations
84% related
Wireless network
122.5K papers, 2.1M citations
84% related
Node (networking)
158.3K papers, 1.7M citations
83% related
Wireless
133.4K papers, 1.9M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202390
2022195
2021432
2020493
2019570
2018573