scispace - formally typeset
Search or ask a question
Topic

Network topology

About: Network topology is a research topic. Over the lifetime, 52259 publications have been published within this topic receiving 1006627 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper proposes new network resilience metrics that reflect the heterogeneous roles of nodes in supply networks and presents a hybrid and tunable network growth model called Degree and Locality-based Attachment (DLA), in which new nodes make connections based on both degree and locality.
Abstract: In this paper, we study the resilience of supply networks against disruptions and provide insights to supply chain managers on how to construct a resilient supply network from the perspective of complex network topologies. Our goal is to study how different network topologies, which are created from different growth models, affect the network's resilience against both random and targeted disruptions. Of particular interest are situations where the type of disruption is unknown. Using a military logistic network as a case study, we propose new network resilience metrics that reflect the heterogeneous roles (e.g., supply, relay, and demand) of nodes in supply networks. We also present a hybrid and tunable network growth model called Degree and Locality-based Attachment (DLA), in which new nodes make connections based on both degree and locality. Using computer simulations, we compare the resilience of several supply network topologies that are generated with different growth models. The results show that the new resilience metrics can capture important resilience requirements for supply networks very well. We also found that the supply network topology generated by the DLA model provides balanced resilience against both random and targeted disruptions.

239 citations

Journal ArticleDOI
TL;DR: A novel combination of functional and anatomical connectivity is introduced to study the network topology subserving a cognitive function of interest to unveil how cognitive functions emerge through interaction of functionally interacting and anatomically interconnected brain regions.

239 citations

Journal ArticleDOI
09 Apr 2008-PLOS ONE
TL;DR: The results suggest that a balanced duo of learning and innovation may help to preserve cooperation during the re-organization of real-world networks, and may play a prominent role in the evolution of self-organizing, complex systems.
Abstract: Cooperation plays a key role in the evolution of complex systems. However, the level of cooperation extensively varies with the topology of agent networks in the widely used models of repeated games. Here we show that cooperation remains rather stable by applying the reinforcement learning strategy adoption rule, Q-learning on a variety of random, regular, small-word, scale-free and modular network models in repeated, multi-agent Prisoner's Dilemma and Hawk-Dove games. Furthermore, we found that using the above model systems other long-term learning strategy adoption rules also promote cooperation, while introducing a low level of noise (as a model of innovation) to the strategy adoption rules makes the level of cooperation less dependent on the actual network topology. Our results demonstrate that long-term learning and random elements in the strategy adoption rules, when acting together, extend the range of network topologies enabling the development of cooperation at a wider range of costs and temptations. These results suggest that a balanced duo of learning and innovation may help to preserve cooperation during the re-organization of real-world networks, and may play a prominent role in the evolution of self-organizing, complex systems.

239 citations

Journal ArticleDOI
TL;DR: It is theoretically shown that the consensus in multi-agent systems with a periodic intermittent communication and directed topology containing a spanning tree can be cast into the stability of a set of low-dimensional switching systems.
Abstract: SUMMARY Without assuming that the mobile agents can communicate with their neighbors all the time, the consensus problem of multi-agent systems with general linear node dynamics and a fixed directed topology is investigated. To achieve consensus, a new class of distributed protocols designed based only on the intermittent relative information are presented. By using tools from matrix analysis and switching systems theory, it is theoretically shown that the consensus in multi-agent systems with a periodic intermittent communication and directed topology containing a spanning tree can be cast into the stability of a set of low-dimensional switching systems. It is proved that there exists a protocol guaranteeing consensus if each agent is stabilizable and the communication rate is larger than a threshold value. Furthermore, a multi-step intermittent consensus protocol design procedure is provided. The consensus algorithm is then extended to solve the formation control problem of linear multi-agent systems with intermittent communication constraints as well as the consensus tracking problem with switching directed topologies. Finally, some numerical simulations are provided to verify the effectiveness of the theoretical results. Copyright © 2013 John Wiley & Sons, Ltd.

239 citations

Journal ArticleDOI
TL;DR: The authors determine necessary and sufficient conditions for shortest path routing and characterize maximum-sized families of parallel paths between any two nodes of the star graph, and parallel paths are proven of minimum length within a small additive constant.
Abstract: Undertakes a comparative study of two important interconnection network topologies: the star graph and the hypercube, from the graph theory point of view. Topological properties are derived for the star graph and are compared with the corresponding properties of the hypercube. Among other results, the authors determine necessary and sufficient conditions for shortest path routing and characterize maximum-sized families of parallel paths between any two nodes of the star graph. These parallel paths are proven of minimum length within a small additive constant. They also define greedy and asymptotically balanced spanning trees to support broadcasting and personalized communication on the star graph. These results confirm the already claimed topological superiority of the star graph over the hypercube. >

239 citations


Network Information
Related Topics (5)
Network packet
159.7K papers, 2.2M citations
91% related
Wireless network
122.5K papers, 2.1M citations
87% related
Wireless sensor network
142K papers, 2.4M citations
87% related
Optimization problem
96.4K papers, 2.1M citations
87% related
Wireless
133.4K papers, 1.9M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,292
20223,051
20212,286
20202,746
20192,992
20183,259