scispace - formally typeset
Search or ask a question
Topic

Network topology

About: Network topology is a research topic. Over the lifetime, 52259 publications have been published within this topic receiving 1006627 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors propose a model-based approach to analyze the dynamic tomography of such time-evolving networks, which allows actors to behave differently over time and carry out different roles/functions when interacting with different peers.
Abstract: In a dynamic social or biological environment, the interactions between the actors can undergo large and systematic changes. In this paper we propose a model-based approach to analyze what we will refer to as the dynamic tomography of such time-evolving networks. Our approach offers an intuitive but powerful tool to infer the semantic underpinnings of each actor, such as its social roles or biological functions, underlying the observed network topologies. Our model builds on earlier work on a mixed membership stochastic blockmodel for static networks, and the state-space model for tracking object trajectory. It overcomes a major limitation of many current network inference techniques, which assume that each actor plays a unique and invariant role that accounts for all its interactions with other actors; instead, our method models the role of each actor as a time-evolving mixed membership vector that allows actors to behave differently over time and carry out different roles/functions when interacting with different peers, which is closer to reality. We present an efficient algorithm for approximate inference and learning using our model; and we applied our model to analyze a social network between monks (i.e., the Sampson’s network), a dynamic email communication network between the Enron employees, and a rewiring gene interaction network of fruit fly collected during its full life cycle. In all cases, our model reveals interesting patterns of the dynamic roles of the actors.

223 citations

Proceedings ArticleDOI
01 Dec 2007
TL;DR: This paper embeds the requirement for connectivity of the underlying communication network in the controller specifications and employs double integrator models for the agents and design nearest neighbor control laws, based on potential fields, that serve a twofold objective.
Abstract: Coordinated motion of multiple agents raises fundamental and novel problems in control theory and robotics. In particular, in applications such as consensus seeking or flocking by a group of mobile agents, a great new challenge is the development of robust distributed motion algorithms that can always achieve the desired coordination. In this paper, we address this challenge by embedding the requirement for connectivity of the underlying communication network in the controller specifications. We employ double integrator models for the agents and design nearest neighbor control laws, based on potential fields, that serve a twofold objective. First, they contribute to velocity alignment in the system and second, they regulate switching among different network topologies so that the connectivity requirement is always met. Collision avoidance among neighboring agents is also ensured and under the assumption that the initial network is connected, the overall system is shown to asymptotically flock for all initial conditions. In particular, it is shown that flocking is achieved even in sparse communication networks where connectivity is more prone to failure. We conclude by illustrating a class of interesting problems that can be achieved while preserving connectivity.

222 citations

Journal ArticleDOI
TL;DR: This work addresses the combined problem of motion and network topology control in a group of mobile agents with common objective the flocking behavior of the group by means of distributed topological control that decides on both deletion and creation of communication links between agents, adapting the network to the group's spatial distribution.
Abstract: In this technical note, we address the combined problem of motion and network topology control in a group of mobile agents with common objective the flocking behavior of the group. Instead of assuming network connectivity, we enforce it by means of distributed topology control that decides on both deletion and creation of communication links between agents, adapting the network to the group's spatial distribution. With this protocol ensuring network connectivity, a decentralized motion controller aligns agent velocity vectors and regulates inter-agent distances to maintain existing network links. The stability of the flocking controller is established in continuous time by means of an observability argument on a quadratic form of the graph Laplacian that exploits the time delay between link deletion and creation caused by the topology control protocol, which induces a dwell time between network switches.

222 citations

Journal ArticleDOI
TL;DR: The factors that influence the selection of the transmission power, including the important interplay between the routing (network) and the medium access control (MAC) layers are discussed, and protocols that account for such interplay are presented.
Abstract: Recently, power control in mobile ad hoc networks has been the focus of extensive research. Its main objectives are to reduce the total energy consumed in packet delivery and/or increase network throughput by increasing the channel's spatial reuse. In this article, we give an overview of various power control approaches that have been proposed in the literature. We discuss the factors that influence the selection of the transmission power, including the important interplay between the routing (network) and the medium access control (MAC) layers. Protocols that account for such interplay are presented.

221 citations

Journal ArticleDOI
TL;DR: A unified control plane architecture based on OpenFlow for optical SDN tailored to cloud services is introduced and implementations are proposed and demonstrated across heterogeneous state-of-the-art optical, packet, and IT resource integrated cloud infrastructure.
Abstract: Software-defined networking (SDN) enables programmable SDN control and management functions at a number of layers, allowing applications to control network resources or information across different technology domains, e.g., Ethernet, wireless, and optical. Current cloud-based services are pushing networks to new boundaries by deploying cutting edge optical technologies to provide scalable and flexible services. SDN combined with the latest optical transport technologies, such as elastic optical networks, enables network operators and cloud service providers to customize their infrastructure dynamically to user/application requirements and therefore minimize the extra capital and operational costs required for hosting new services. In this paper a unified control plane architecture based on OpenFlow for optical SDN tailored to cloud services is introduced. Requirements for its implementation are discussed considering emerging optical transport technologies. Implementations of the architecture are proposed and demonstrated across heterogeneous state-of-the-art optical, packet, and IT resource integrated cloud infrastructure. Finally, its performance is evaluated using cloud use cases and its results are discussed.

221 citations


Network Information
Related Topics (5)
Network packet
159.7K papers, 2.2M citations
91% related
Wireless network
122.5K papers, 2.1M citations
87% related
Wireless sensor network
142K papers, 2.4M citations
87% related
Optimization problem
96.4K papers, 2.1M citations
87% related
Wireless
133.4K papers, 1.9M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,292
20223,051
20212,286
20202,746
20192,992
20183,259