scispace - formally typeset
Search or ask a question
Topic

Network topology

About: Network topology is a research topic. Over the lifetime, 52259 publications have been published within this topic receiving 1006627 citations.


Papers
More filters
Proceedings ArticleDOI
31 May 2011
TL;DR: This work demonstrates an efficient and fast new heuristic which is based on graph similarity and shows its utility with application communication patterns on real topologies, and demonstrates that the benefit of topology mapping grows with the network size.
Abstract: The steadily increasing number of nodes in high-performance computing systems and the technology and power constraints lead to sparse network topologies. Efficient mapping of application communication patterns to the network topology gains importance as systems grow to petascale and beyond. Such mapping is supported in parallel programming frameworks such as MPI, but is often not well implemented. We show that the topology mapping problem is NP-complete and analyze and compare different practical topology mapping heuristics. We demonstrate an efficient and fast new heuristic which is based on graph similarity and show its utility with application communication patterns on real topologies. Our mapping strategies support heterogeneous networks and show significant reduction of congestion on torus, fat-tree, and the PERCS network topologies, for irregular communication patterns. We also demonstrate that the benefit of topology mapping grows with the network size and show how our algorithms can be used in a practical setting to optimize communication performance. Our efficient topology mapping strategies are shown to reduce network congestion by up to 80%, reduce average dilation by up to 50%, and improve benchmarked communication performance by 18%.

202 citations

Journal ArticleDOI
TL;DR: A new type of unsupervised, growing, self-organizing neural network that expands itself by following the taxonomic relationships that exist among the sequences being classified, which is an excellent tool for phylogenetic analysis of a large number of sequences.
Abstract: We propose a new type of unsupervised, growing, self-organizing neural network that expands itself by following the taxonomic relationships that exist among the sequences being classified. The binary tree topology of this neutral network, contrary to other more classical neural network topologies, permits an efficient classification of sequences. The growing nature of this procedure allows to stop it at the desired taxonomic level without the necessity of waiting until a complete phylogenetic tree is produced. This novel approach presents a number of other interesting properties, such as a time for convergence which is, approximately, a lineal function of the number of sequences. Computer simulation and a real example show that the algorithm accurately finds the phylogenetic tree that relates the data. All this makes the neural network presented here an excellent tool for phylogenetic analysis of a large number of sequences.

202 citations

Journal ArticleDOI
TL;DR: A general theoretical approach to study the effects of network topology on dynamic range is developed, which quantifies the range of stimulus intensities resulting in distinguishable network responses and finds that the largest eigenvalue of the weighted network adjacency matrix governs the network dynamic range.
Abstract: The collective dynamics of a network of coupled excitable systems in response to an external stimulus depends on the topology of the connections in the network. Here we develop a general theoretical approach to study the effects of network topology on dynamic range, which quantifies the range of stimulus intensities resulting in distinguishable network responses. We find that the largest eigenvalue of the weighted network adjacency matrix governs the network dynamic range. When the largest eigenvalue is exactly one, the system is in a critical state and its dynamic range is maximized. Further, we examine higher order behavior of the steady state system, which predicts that networks with more homogeneous degree distributions should have higher dynamic range. Our analysis, confirmed by numerical simulations, generalizes previous studies in terms of the largest eigenvalue of the adjacency matrix.

202 citations

Journal ArticleDOI
TL;DR: The state of the art in the design and construction of oscillators is reviewed, comparing the features of each of the main networks published to date, the models used for in silico design and validation and, where available, relevant experimental data.
Abstract: Synthetic biology is a rapidly expanding discipline at the interface between engineering and biology. Much research in this area has focused on gene regulatory networks that function as biological switches and oscillators. Here we review the state of the art in the design and construction of oscillators, comparing the features of each of the main networks published to date, the models used for in silico design and validation and, where available, relevant experimental data. Trends are apparent in the ways that network topology constrains oscillator characteristics and dynamics. Also, noise and time delay within the network can both have constructive and destructive roles in generating oscillations, and stochastic coherence is commonplace. This review can be used to inform future work to design and implement new types of synthetic oscillators or to incorporate existing oscillators into new designs.

202 citations

Journal ArticleDOI
01 Jan 2010
TL;DR: The experimental results show that these immigrants and memory-based GAs can quickly adapt to environmental changes and produce high-quality solutions after each change and this paper considers MANETs as target systems because they represent new-generation wireless networks.
Abstract: In recent years, the static shortest path (SP) problem has been well addressed using intelligent optimization techniques, e.g., artificial neural networks, genetic algorithms (GAs), particle swarm optimization, etc. However, with the advancement in wireless communications, more and more mobile wireless networks appear, e.g., mobile networks [mobile ad hoc networks (MANETs)], wireless sensor networks, etc. One of the most important characteristics in mobile wireless networks is the topology dynamics, i.e., the network topology changes over time due to energy conservation or node mobility. Therefore, the SP routing problem in MANETs turns out to be a dynamic optimization problem. In this paper, we propose to use GAs with immigrants and memory schemes to solve the dynamic SP routing problem in MANETs. We consider MANETs as target systems because they represent new-generation wireless networks. The experimental results show that these immigrants and memory-based GAs can quickly adapt to environmental changes (i.e., the network topology changes) and produce high-quality solutions after each change.

202 citations


Network Information
Related Topics (5)
Network packet
159.7K papers, 2.2M citations
91% related
Wireless network
122.5K papers, 2.1M citations
87% related
Wireless sensor network
142K papers, 2.4M citations
87% related
Optimization problem
96.4K papers, 2.1M citations
87% related
Wireless
133.4K papers, 1.9M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,292
20223,051
20212,286
20202,746
20192,992
20183,259