scispace - formally typeset
Search or ask a question
Topic

Network topology

About: Network topology is a research topic. Over the lifetime, 52259 publications have been published within this topic receiving 1006627 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This work is the first attempt at characterizing an important "maximum" measure of wireless network capacity, and can be used to shed light on previous topology formation protocols like Span and GAF that attempt to produce "good" or "capacity-preserving" topologies, while allowing nodes to alternate between sleep and awake states.
Abstract: We consider the problem of determining the maximum capacity of the media access (MAC) layer in wireless ad hoc networks. Due to spatial contention for the shared wireless medium, not all nodes can concurrently transmit packets to each other in these networks. The maximum number of possible concurrent transmissions is, therefore, an estimate of the maximum network capacity, and depends on the MAC protocol being used. We show that for a large class of MAC protocols based on virtual carrier sensing using RTS/CTS messages, which includes the popular IEEE 802.11 standard, this problem may be modeled as a maximum Distance-2 matching ( D2EMIS) in the underlying wireless network: Given a graph G(V,E), find a set of edges E'/spl sube/E such that no two edges in E' are connected by another edge in E. D2EMIS is NP-complete. Our primary goal is to show that it can be approximated efficiently in networks that arise in practice. We do this by focusing on an admittedly simplistic, yet natural, graph-theoretic model for ad hoc wireless networks based on disk graphs, where a node can reach all other nodes within some distance (nodes may have unequal reach distances). We show that our approximation yields good capacity bounds. Our work is the first attempt at characterizing an important "maximum" measure of wireless network capacity, and can be used to shed light on previous topology formation protocols like Span and GAF that attempt to produce "good" or "capacity-preserving" topologies, while allowing nodes to alternate between sleep and awake states. Our work shows an efficient way to compute an upper bound on maximum wireless network capacity, thereby allowing topology formation algorithms to determine how close they are to optimal. We also outline a distributed algorithm for the problem for unit disk graphs, and briefly discuss extensions of our results to: 1) different node interference models; 2) directional antennas; and 3) other transceiver connectivity structures besides disk graphs.

177 citations

Journal ArticleDOI
TL;DR: This paper proves its NP-completeness and proposes two heuristics: power assignment based on minimum spanning tree (denoted by MST) and incremental power and indicates that the incremental power heuristic is always better than MST.
Abstract: Wireless sensor networks have recently attracted lots of research effort due to the wide range of applications. These networks must operate for months or years. However, the sensors are powered by battery, which may not be able to be recharged after they are deployed. Thus, energy-aware network management is extremely important. In this paper, we study the following problem: Given a set of sensors in the plane, assign transmit power to each sensor such that the induced topology containing only bidirectional links is strongly connected. This problem is significant in both theory and application. We prove its NP-completeness and propose two heuristics: power assignment based on minimum spanning tree (denoted by MST) and incremental power. We also show that the MST heuristic has a performance ratio of 2. Simulation study indicates that the performance of these two heuristics does not differ very much, but; on average, the incremental power heuristic is always better than MST.

177 citations

Journal ArticleDOI
TL;DR: It is shown that the network coding capability can lead to arbitrarily better delay performance as the system parameters scale when compared to traditional transmission strategies without coding.
Abstract: In an unreliable packet network setting, we study the performance gains of optimal transmission strategies in the presence and absence of coding capability at the transmitter, where performance is measured in delay and throughput. Although our results apply to a large class of coding strategies including maximum-distance separable (MDS) and Digital Fountain codes, we use random network codes in our discussions because these codes have a greater applicability for complex network topologies. To that end, after introducing a key setting in which performance analysis and comparison can be carried out, we provide closed-form as well as asymptotic expressions for the delay performance with and without network coding. We show that the network coding capability can lead to arbitrarily better delay performance as the system parameters scale when compared to traditional transmission strategies without coding. We further develop a joint scheduling and random-access scheme to extend our results to general wireless network topologies.

177 citations

Journal ArticleDOI
TL;DR: It is shown that the approach to stabilize a plant with a network of resource constrained wireless nodes introduces very low computational and communication overhead to the nodes in the network, allows the use of simple transmission scheduling algorithms, and enables compositional design.
Abstract: We present a method to stabilize a plant with a network of resource constrained wireless nodes. As opposed to traditional networked control schemes where the nodes simply route information to and from a dedicated controller (perhaps performing some encoding along the way), our approach treats the network itself as the controller. Specifically, we formulate a strategy for each node in the network to follow, where at each time-step, each node updates its internal state to be a linear combination of the states of the nodes in its neighborhood. We show that this causes the entire network to behave as a linear dynamical system, with sparsity constraints imposed by the network topology. We provide a numerical design procedure to determine appropriate linear combinations to be applied by each node so that the transmissions of the nodes closest to the actuators will stabilize the plant. We also show how our design procedure can be modified to maintain mean square stability under packet drops in the network, and present a distributed scheme that can handle node failures while preserving stability. We call this architecture a Wireless Control Network, and show that it introduces very low computational and communication overhead to the nodes in the network, allows the use of simple transmission scheduling algorithms, and enables compositional design (where the existing wireless control infrastructure can be easily extended to handle new plants that are brought online in the vicinity of the network).

177 citations

Journal ArticleDOI
TL;DR: In this article, an e-mail worm simulation model is presented that accounts for the behaviors of email users, including checking time and the probability of opening an email attachment, and the impact of the power-law topology on the spread of E-mail worms is mixed.
Abstract: As many people rely on e-mail communications for business and everyday life, Internet e-mail worms constitute one of the major security threats for our society. Unlike scanning worms such as Code Red or Slammer, e-mail worms spread over a logical network defined by e-mail address relationships, making traditional epidemic models invalid for modeling the propagation of e-mail worms. In addition, we show that the topological epidemic models presented by M. Boguna, et al. (2000) largely overestimate epidemic spreading speed in topological networks due to their implicit homogeneous mixing assumption. For this reason, we rely on simulations to study e-mail worm propagation in this paper. We present an e-mail worm simulation model that accounts for the behaviors of e-mail users, including e-mail checking time and the probability of opening an e-mail attachment. Our observations of e-mail lists suggest that an Internet e-mail network follows a heavy-tailed distribution in terms of node degrees, and we model it as a power-law network. To study the topological impact, we compare e-mail worm propagation on power-law topology with worm propagation on two other topologies: small-world topology and random-graph topology. The impact of the power-law topology on the spread of e-mail worms is mixed: E-mail worms spread more quickly on a power-law topology than on a small-world topology or a random-graph topology, but immunization defense is more effective on a power-law topology.

177 citations


Network Information
Related Topics (5)
Network packet
159.7K papers, 2.2M citations
91% related
Wireless network
122.5K papers, 2.1M citations
87% related
Wireless sensor network
142K papers, 2.4M citations
87% related
Optimization problem
96.4K papers, 2.1M citations
87% related
Wireless
133.4K papers, 1.9M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,292
20223,051
20212,286
20202,746
20192,992
20183,259