scispace - formally typeset
Search or ask a question
Topic

Networking hardware

About: Networking hardware is a research topic. Over the lifetime, 20561 publications have been published within this topic receiving 231843 citations. The topic is also known as: network equipment & computer networking device.


Papers
More filters
Patent
09 Apr 2001
TL;DR: In this article, the authors present a system and apparatus for efficient and reliable, control and distribution of data files or portions of files, applications, or other data objects in large-scale distributed networks.
Abstract: The present invention provides a system and apparatus for efficient and reliable, control and distribution of data files or portions of files, applications, or other data objects in large-scale distributed networks. A unique content-management front-end provides efficient controls for triggering distribution of digitized data content to selected groups of a large number of remote computer servers. Transport-layer protocols interact with distribution controllers to automatically determine an optimized tree-like distribution sequence to group leaders selected by network devices at each remote site. Reliable store-and-forward transfer to clusters is accomplished using a unicast protocol in the ordered tree sequence. Once command messages and content arrive at all participating group leaders, local hybrid multicast protocols efficiently and reliably distribute them to the back-end nodes for interpretation and execution. Positive acknowledgement is then sent back to the content manager from each group leader, and the updated content in each remote device autonomously goes 'live' when the content change is locally completed.

1,261 citations

Dissertation
01 Jan 1998
TL;DR: In the thesis it is shown how to analyze stability and expected performance of linear controllers where the network delays are described by one of the two network models above.
Abstract: Control loops that are closed over a communication network get more and more common. A problem with such systems is that the transfer delays will be varying with different characteristics depending on the network hardware and software. The network delays are typically varying due to varying network load, scheduling policies in the network and the nodes, and due to network failures. Two network models of different complexity are studied: Random delays that are independent from transfer to transfer, Random delays with probability distribution functions governed by an underlying Markov chain. The delay models are verified by experimental measurements of network delays. In the thesis it is shown how to analyze stability and expected performance of linear controllers where the network delays are described by one of the two network models above. Methods to evaluate quadratic cost functions are developed. Through the same analysis we find criteria for mean square stability of the closed loop for the different network models. The Linear Quadratic Gaussian (LQG) optimal controller is developed for the two delay models. The derived controller uses knowledge of old time delays. These can be calculated using ``timestamping'' of messages in the network. ``Timestamping'' means that every transfered signal is marked with the time of generation. The receiving node can then calculate how long the transfer delay was by comparing the timestamp with the node's internal clock. (Less)

1,202 citations

Journal ArticleDOI
TL;DR: Three problems in network management are identified: enabling frequent changes to network conditions and state, providing support for network configuration in a highlevel language, and providing better visibility and control over tasks for performing network diagnosis and troubleshooting.
Abstract: Network management is challenging. To operate, maintain, and secure a communication network, network operators must grapple with low-level vendor-specific configuration to implement complex high-level network policies. Despite many previous proposals to make networks easier to manage, many solutions to network management problems amount to stop-gap solutions because of the difficulty of changing the underlying infrastructure. The rigidity of the underlying infrastructure presents few possibilities for innovation or improvement, since network devices have generally been closed, proprietary, and vertically integrated. A new paradigm in networking, software defined networking (SDN), advocates separating the data plane and the control plane, making network switches in the data plane simple packet forwarding devices and leaving a logically centralized software program to control the behavior of the entire network. SDN introduces new possibilities for network management and configuration methods. In this article, we identify problems with the current state-of-the-art network configuration and management mechanisms and introduce mechanisms to improve various aspects of network management. We focus on three problems in network management: enabling frequent changes to network conditions and state, providing support for network configuration in a highlevel language, and providing better visibility and control over tasks for performing network diagnosis and troubleshooting. The technologies we describe enable network operators to implement a wide range of network policies in a high-level policy language and easily determine sources of performance problems. In addition to the systems themselves, we describe various prototype deployments in campus and home networks that demonstrate how SDN can improve common network management tasks.

1,122 citations

Proceedings ArticleDOI
25 Aug 2003
TL;DR: This paper examines the somewhat controversial subject of energy consumption of networking devices in the Internet, motivated by data collected by the U.S. Department of Commerce, and discusses the impact on network protocols of saving energy by putting network interfaces and other router & switch components to sleep.
Abstract: In this paper we examine the somewhat controversial subject of energy consumption of networking devices in the Internet, motivated by data collected by the U.S. Department of Commerce. We discuss the impact on network protocols of saving energy by putting network interfaces and other router & switch components to sleep. Using sample packet traces, we first show that it is indeed reasonable to do this and then we discuss the changes that may need to be made to current Internet protocols to support a more aggressive strategy for sleeping. Since this is a position paper, we do not present results but rather suggest interesting directions for core networking research. The impact of saving energy is huge, particularly in the developing world where energy is a precious resource whose scarcity hinders widespread Internet deployment.

963 citations

Journal ArticleDOI
TL;DR: A comprehensive summary of recent work addressing energy efficient and low-power design within all layers of the wireless network protocol stack of wireless networks is presented.
Abstract: Wireless networking has witnessed an explosion of interest from consumers in recent years for its applications in mobile and personal communications. As wireless networks become an integral component of the modern communication infrastructure, energy efficiency will be an important design consideration due to the limited battery life of mobile terminals. Power conservation techniques are commonly used in the hardware design of such systems. Since the network interface is a significant consumer of power, considerable research has been devoted to low-power design of the entire network protocol stack of wireless networks in an effort to enhance energy efficiency. This paper presents a comprehensive summary of recent work addressing energy efficient and low-power design within all layers of the wireless network protocol stack.

958 citations


Network Information
Related Topics (5)
Network packet
159.7K papers, 2.2M citations
84% related
Wireless network
122.5K papers, 2.1M citations
82% related
Wireless sensor network
142K papers, 2.4M citations
82% related
Wireless
133.4K papers, 1.9M citations
82% related
Key distribution in wireless sensor networks
59.2K papers, 1.2M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202325
202257
2021695
20201,608
20191,713
20181,627