scispace - formally typeset
Search or ask a question
Topic

Neural facilitation

About: Neural facilitation is a research topic. Over the lifetime, 1566 publications have been published within this topic receiving 100939 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The evidence for this hypothesis, and the origins of the different kinetic phases of synaptic enhancement, as well as the interpretation of statistical changes in transmitter release and roles played by other factors such as alterations in presynaptic Ca(2+) influx or postsynaptic levels of [Ca(2+)]i are discussed.
Abstract: ▪ Abstract Synaptic transmission is a dynamic process. Postsynaptic responses wax and wane as presynaptic activity evolves. This prominent characteristic of chemical synaptic transmission is a crucial determinant of the response properties of synapses and, in turn, of the stimulus properties selected by neural networks and of the patterns of activity generated by those networks. This review focuses on synaptic changes that result from prior activity in the synapse under study, and is restricted to short-term effects that last for at most a few minutes. Forms of synaptic enhancement, such as facilitation, augmentation, and post-tetanic potentiation, are usually attributed to effects of a residual elevation in presynaptic [Ca2+]i, acting on one or more molecular targets that appear to be distinct from the secretory trigger responsible for fast exocytosis and phasic release of transmitter to single action potentials. We discuss the evidence for this hypothesis, and the origins of the different kinetic phases...

4,687 citations

Journal ArticleDOI
TL;DR: The evidence for this hypothesis, the origins of the different kinetic phases of synaptic enhancement, as well as the interpretation of statistical changes in transmitter release and roles played by other factors such as alterations in presynaptic Ca 2+ influx or postsynaptic levels of [Ca 2+]i are discussed.
Abstract: ■ Abstract Synaptic transmission is a dynamic process. Postsynaptic responses wax and wane as presynaptic activity evolves. This prominent characteristic of chemical synaptic transmission is a crucial determinant of the response properties of synapses and, in turn, of the stimulus properties selected by neural networks and of the patterns of activity generated by those networks. This review focuses on synaptic changes that result from prior activity in the synapse under study, and is restricted to short-term effects that last for at most a few minutes. Forms of synaptic enhancement, such as facilitation, augmentation, and post-tetanic potentiation, are usually attributed to effects of a residual elevation in presynaptic [Ca 2+]i, acting on one or more molecular targets that appear to be distinct from the secretory trigger responsible for fast exocytosis and phasic release of transmitter to single action potentials. We discuss the evidence for this hypothesis, and the origins of the different kinetic phases of synaptic enhancement, as well as the interpretation of statistical changes in transmitter release and roles played by other factors such as alterations in presynaptic Ca 2+ influx or postsynaptic levels of [Ca 2+]i. Synaptic depression dominates enhancement at many synapses. Depression is usually attributed to depletion of some pool of readily releasable vesicles, and various forms of the depletion model are discussed. Depression can also arise from feedback activation of presynaptic receptors and from postsynaptic processes such as receptor desensitization. In addition, glial-neuronal interactions can contribute to short-term synaptic plasticity. Finally, we summarize the recent literature on putative molecular players in synaptic plasticity and the effects of genetic manipulations and other modulatory influences.

1,745 citations

Journal ArticleDOI
TL;DR: Treatment needs to move from merely suppressing symptoms to a disease-modifying strategy aimed at both preventing maladaptive plasticity and reducing intrinsic risk.
Abstract: Neuropathic pain is triggered by lesions to the somatosensory nervous system that alter its structure and function so that pain occurs spontaneously and responses to noxious and innocuous stimuli are pathologically amplified. The pain is an expression of maladaptive plasticity within the nociceptive system, a series of changes that constitute a neural disease state. Multiple alterations distributed widely across the nervous system contribute to complex pain phenotypes. These alterations include ectopic generation of action potentials, facilitation and disinhibition of synaptic transmission, loss of synaptic connectivity and formation of new synaptic circuits, and neuroimmune interactions. Although neural lesions are necessary, they are not sufficient to generate neuropathic pain; genetic polymorphisms, gender, and age all influence the risk of developing persistent pain. Treatment needs to move from merely suppressing symptoms to a disease-modifying strategy aimed at both preventing maladaptive plasticity and reducing intrinsic risk.

1,616 citations

Journal ArticleDOI
TL;DR: There is an emerging view, which is reviewed herein, in which brain function actually arises from the coordinated activity of a network comprising both neurons and glia, rather than the classically accepted paradigm that brain function results exclusively from neuronal activity.

1,481 citations

Journal ArticleDOI
TL;DR: The hypothesis is put forward that a residue of the ‘active calcium’ which enters the terminal axon membrane during the nerve impulse is responsible for short‐term facilitation.
Abstract: 1. The hypothesis is put forward that a residue of the ;active calcium' which enters the terminal axon membrane during the nerve impulse is responsible for short-term facilitation.2. This suggestion has been tested on the myoneural junction by varying the local calcium concentration so that during the first of two nerve impulses [Ca](o) is either much lower than, or raised to a level approaching that, during the second impulse. Facilitation is much larger in the latter case, which is in accordance with the ;calcium hypothesis'.3. A short pulse of depolarization focally applied to the junction is followed by a brief period of very intense facilitation. This can be seen in the tetrodotoxin-treated preparation, e.g. by lengthening the depolarization from 1 to 2 msec which can cause a more than fifty-fold increase in transmitter release. This large ;early facilitation' (which presumably occurs also during the course of a normal action potential) is discussed in relation to the ;calcium hypothesis'.

1,336 citations


Network Information
Related Topics (5)
Synaptic plasticity
19.3K papers, 1.3M citations
89% related
Neuron
22.5K papers, 1.3M citations
89% related
Hippocampal formation
30.6K papers, 1.7M citations
88% related
NMDA receptor
24.2K papers, 1.3M citations
85% related
Hippocampus
34.9K papers, 1.9M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202320
202240
202130
202031
201930
201831