scispace - formally typeset
Search or ask a question
Topic

Neurite

About: Neurite is a research topic. Over the lifetime, 12207 publications have been published within this topic receiving 613163 citations. The topic is also known as: neuronal process.


Papers
More filters
Journal ArticleDOI
27 Jan 2000-Nature
TL;DR: Cl cloning of nogo A, the rat complementary DNA encoding NI-220/250 is reported, showing that Nogo-A is a potent inhibitor of neurite growth and an IN-1 antigen produced by oligodendrocytes, and may allow the generation of new reagents to enhance CNS regeneration and plasticity.
Abstract: The capacity of the adult brain and spinal cord to repair lesions by axonal regeneration or compensatory fibre growth is extremely limited. A monoclonal antibody (IN-1) raised against NI-220/250, a myelin protein that is a potent inhibitor of neurite growth, promoted axonal regeneration and compensatory plasticity following lesions of the central nervous system (CNS) in adult rats. Here we report the cloning of nogo A, the rat complementary DNA encoding NI-220/250. The nogo gene encodes at least three major protein products (Nogo-A, -B and -C). Recombinant Nogo-A is recognized by monoclonal antibody IN-1, and it inhibits neurite outgrowth from dorsal root ganglia and spreading of 3T3 fibroblasts in an IN-1-sensitive manner. Antibodies against Nogo-A stain CNS myelin and oligodendrocytes and allow dorsal root ganglion neurites to grow on CNS myelin and into optic nerve explants. These data show that Nogo-A is a potent inhibitor of neurite growth and an IN-1 antigen produced by oligodendrocytes, and may allow the generation of new reagents to enhance CNS regeneration and plasticity.

1,477 citations

Journal ArticleDOI
03 Jun 1994-Cell
TL;DR: It is now apparent that regulation of neuronal function by the recently identified members of the neurotrophin family is far more complex than envisioned on the basis of work with NGF, particularly for neurons in the central nervous system (CNS).

1,448 citations

Journal ArticleDOI
TL;DR: Evidence is reported that the MAP tau (tau) appears to be their major antigenic component, and this may result in instability of microtubules, consequent loss of effective transport of molecules and organelles, and, ultimately, neuronal death in Alzheimer disease.
Abstract: The detailed protein composition of the paired helical filaments (PHF) that accumulate in human neurons in aging and Alzheimer disease is unknown. However, the identity of certain components has been surmised by using immunocytochemical techniques. Whereas PHF share epitopes with neurofilament proteins and microtubule-associated protein (MAP) 2, we report evidence that the MAP tau (tau) appears to be their major antigenic component. Immunization of rabbits with NaDodSO4-extracted, partially purified PHF (free of normal cytoskeletal elements, including tau) consistently produces antibodies to tau but not, for example, to neurofilaments. Such PHF antibodies label all of the heterogeneous fetal and mature forms of tau from rat and human brain. Absorption of PHF antisera with heat-stable MAPs (rich in tau) results in almost complete loss of staining of neurofibrillary tangles (NFT) in human brain sections. An affinity-purified antibody to tau specifically labels NFT and the neurites of senile plaques in human brain sections as well as NaDodSO4-extracted NFT. tau-Immunoreactive NFT frequently extend into the apical dendrites of pyramidal neurons, suggesting an aberrant intracellular locus for this axonal protein. tau and PHF antibodies label tau proteins identically on electrophoretic transfer blots and stain the gel-excluded protein representing NaDodSO4-insoluble PHF in homogenates of human brain. The progressive accumulation of altered tau protein in neurons in Alzheimer disease may result in instability of microtubules, consequent loss of effective transport of molecules and organelles, and, ultimately, neuronal death.

1,361 citations

Journal ArticleDOI
TL;DR: In transgenic mice, overexpression of GAP-43 leads to the spontaneous formation of new synapses and enhanced sprouting after injury, and the protein might play an important role in mediating experience-dependent plasticity.

1,250 citations

Journal ArticleDOI
TL;DR: The inability of the adult glial scar tissue to support neurite outgrowth was best correlated with the expression of CS-PG and CT, suggesting that these molecules may be involved in limiting the growth of regenerating axons in the CNS after injury.
Abstract: The extracellular matrix (ECM) molecules chondroitin-6-sulfate proteoglycan (CS-PG) and cytotactin/tenascin (CT), present on subpopulations of astroglia or their precursors during development, can inhibit neurite outgrowth in vitro. However, it is not known whether these molecules are expressed within the mature CNS following injury, where they could contribute to regenerative failure. Thus, the expression of various ECM molecules that affect axon growth was examined in areas of reactive gliosis caused by implanting a piece of nitrocellulose into the cortex of neonatal and adult animals. The expression of these molecules was compared to the amount of neurite outgrowth that occurred in vitro when the damaged CNS tissue from animals of various ages was removed intact and used as a substrate in explant culture. The results demonstrate that the growth-promoting molecules laminin, collagen type IV, and fibronectin were present around the implant in all experimental groups. In comparison, CS-PG and CT were present within and around the area of the lesion only in adult animals. In vivo, these molecules were colocalized with intensely glial fibrillary acidic protein (GFAP)-positive astrocytes in and immediately adjacent to the scar, but not with other equally intensely GFAP-positive astrocytes in the cortex away from the site of injury. CT and CS-PG were present in gray matter areas of the cortex that had been directly damaged during the implant procedure and in the corpus callosum when lesioned during implantation. In vitro, the glial tissue removed from the lesion site of neonatal animals supported neurite outgrowth, while scars removed from adult animals did not. The inability of the adult glial scar tissue to support neurite outgrowth was best correlated with the expression of CS-PG and CT, suggesting that these molecules may be involved in limiting the growth of regenerating axons in the CNS after injury.

1,208 citations


Network Information
Related Topics (5)
Dopamine
45.7K papers, 2.2M citations
88% related
Programmed cell death
60.5K papers, 3.8M citations
88% related
Cellular differentiation
90.9K papers, 6M citations
88% related
Phosphorylation
69.3K papers, 3.8M citations
87% related
Signal transduction
122.6K papers, 8.2M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
2023231
2022599
2021347
2020356
2019311