scispace - formally typeset
Search or ask a question

Showing papers on "Neurodegeneration published in 2000"


Journal ArticleDOI
TL;DR: The findings indicate that accumulation of proteins that have yet to be identified causes a selective neural cell death without formation of Lewy bodies, and should enhance the exploration of the molecular mechanisms of neurodegeneration in Parkinson disease as well as in other Neurodegenerative diseases that are characterized by involvement of abnormal protein ubiquitination.
Abstract: Autosomal recessive juvenile parkinsonism (AR-JP), one of the most common familial forms of Parkinson disease, is characterized by selective dopaminergic neural cell death and the absence of the Lewy body, a cytoplasmic inclusion body consisting of aggregates of abnormally accumulated proteins. We previously cloned PARK2, mutations of which cause AR-JP (ref. 2), but the function of the gene product, parkin, remains unknown. We report here that parkin is involved in protein degradation as a ubiquitin-protein ligase collaborating with the ubiquitin-conjugating enzyme UbcH7, and that mutant parkins from AR-JP patients show loss of the ubiquitin-protein ligase activity. Our findings indicate that accumulation of proteins that have yet to be identified causes a selective neural cell death without formation of Lewy bodies. Our findings should enhance the exploration of the molecular mechanisms of neurodegeneration in Parkinson disease as well as in other neurodegenerative diseases that are characterized by involvement of abnormal protein ubiquitination, including Alzheimer disease, other tauopathies, CAG triplet repeat disorders and amyotrophic lateral sclerosis.

1,998 citations


Journal ArticleDOI
TL;DR: It is concluded that Aβ is synaptotoxic even in the absence of plaques and that high levels of Aβ1–42 are insufficient to induce plaque formation in mice expressing wild-type hAPP, supporting the emerging view that plaque-independent Aβ toxicity plays an important role in the development of synaptic deficits in AD and related conditions.
Abstract: Amyloid plaques are a neuropathological hallmark of Alzheimer's disease (AD), but their relationship to neurodegeneration and dementia remains controversial. In contrast, there is a good correlation in AD between cognitive decline and loss of synaptophysin-immunoreactive (SYN-IR) presynaptic terminals in specific brain regions. We used expression-matched transgenic mouse lines to compare the effects of different human amyloid protein precursors (hAPP) and their products on plaque formation and SYN-IR presynaptic terminals. Four distinct minigenes were generated encoding wild-type hAPP or hAPP carrying mutations that alter the production of amyloidogenic Aβ peptides. The platelet-derived growth factor β chain promoter was used to express these constructs in neurons. hAPP mutations associated with familial AD (FAD) increased cerebral Aβ1–42 levels, whereas an experimental mutation of the β-secretase cleavage site (671M→I) eliminated production of human Aβ. High levels of Aβ1–42 resulted in age-dependent formation of amyloid plaques in FAD-mutant hAPP mice but not in expression-matched wild-type hAPP mice. Yet, significant decreases in the density of SYN-IR presynaptic terminals were found in both groups of mice. Across mice from different transgenic lines, the density of SYN-IR presynaptic terminals correlated inversely with Aβ levels but not with hAPP levels or plaque load. We conclude that Aβ is synaptotoxic even in the absence of plaques and that high levels of Aβ1–42are insufficient to induce plaque formation in mice expressing wild-type hAPP. Our results support the emerging view that plaque-independent Aβ toxicity plays an important role in the development of synaptic deficits in AD and related conditions.

1,859 citations


Journal ArticleDOI
03 Nov 2000-Science
TL;DR: The selective and specific nitration of alpha-synuclein in these disorders provides evidence to directly link oxidative and nitrative damage to the onset and progression of neurodegenerative synucleinopathies.
Abstract: Aggregated α-synuclein proteins form brain lesions that are hallmarks of neurodegenerative synucleinopathies, and oxidative stress has been implicated in the pathogenesis of some of these disorders. Using antibodies to specific nitrated tyrosine residues in α-synuclein, we demonstrate extensive and widespread accumulations of nitrated α-synuclein in the signature inclusions of Parkinson's disease, dementia with Lewy bodies, the Lewy body variant of Alzheimer's disease, and multiple system atrophy brains. We also show that nitrated α-synuclein is present in the major filamentous building blocks of these inclusions, as well as in the insoluble fractions of affected brain regions of synucleinopathies. The selective and specific nitration of α-synuclein in these disorders provides evidence to directly link oxidative and nitrative damage to the onset and progression of neurodegenerative synucleinopathies.

1,553 citations


Journal ArticleDOI
11 Feb 2000-Science
TL;DR: It is reported that ethanol, acting by a dual mechanism [blockade of N-methyl-D-aspartate (NMDA) glutamate receptors and excessive activation of GABA(A) receptors], triggers widespread apoptotic neurodegeneration in the developing rat forebrain.
Abstract: The deleterious effects of ethanol on the developing human brain are poorly understood. Here it is reported that ethanol, acting by a dual mechanism [blockade of N-methyl-D-aspartate (NMDA) glutamate receptors and excessive activation of GABA(A) receptors], triggers widespread apoptotic neurodegeneration in the developing rat forebrain. Vulnerability coincides with the period of synaptogenesis, which in humans extends from the sixth month of gestation to several years after birth. During this period, transient ethanol exposure can delete millions of neurons from the developing brain. This can explain the reduced brain mass and neurobehavioral disturbances associated with human fetal alcohol syndrome.

1,339 citations


Journal ArticleDOI
TL;DR: A model for pathogenesis that illuminates the unifying features of these polyglutamine disorders is concluded, and may prove relevant to other neurodegenerative disorders as well.
Abstract: A growing number of neurodegenerative diseases have been found to result from the expansion of an unstable trinucleotide repeat. Over the past 6 years, researchers have focused on identifying the mechanism by which the expanded polyglutamine tract renders a protein toxic to a subset of vulnerable neurons. In this review, we summarize the clinicopathologic features of these disorders (spinobulbar muscular atrophy, Huntington disease, and the spinocerebellar ataxias, including dentatorubropallidoluysian atrophy), describe the genes involved and what is known about their products, and discuss the model systems that have lent insight into pathogenesis. The review concludes with a model for pathogenesis that illuminates the unifying features of these polyglutamine disorders. This model may prove relevant to other neurodegenerative disorders as well.

1,287 citations


Journal ArticleDOI
TL;DR: The phenotype of mice expressing P301L mutant tau mimics features of human tauopathies and provides a model for investigating the pathogenesis of diseases with NFT.
Abstract: Neurofibrillary tangles (NFT) composed of the microtubule-associated protein tau are prominent in Alzheimer disease (AD), Pick disease, progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD). Mutations in the gene (Mtapt) encoding tau protein cause frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17), thereby proving that tau dysfunction can directly result in neurodegeneration. Expression of human tau containing the most common FTDP-17 mutation (P301L) results in motor and behavioural deficits in transgenic mice, with age- and gene-dose-dependent development of NFT. This phenotype occurred as early as 6.5 months in hemizygous and 4.5 months in homozygous animals. NFT and Pick-body-like neuronal lesions occurred in the amygdala, septal nuclei, pre-optic nuclei, hypothalamus, midbrain, pons, medulla, deep cerebellar nuclei and spinal cord, with tau-immunoreactive pre-tangles in the cortex, hippocampus and basal ganglia. Areas with the most NFT had reactive gliosis. Spinal cord had axonal spheroids, anterior horn cell loss and axonal degeneration in anterior spinal roots. We also saw peripheral neuropathy and skeletal muscle with neurogenic atrophy. Brain and spinal cord contained insoluble tau that co-migrated with insoluble tau from AD and FTDP-17 brains. The phenotype of mice expressing P301L mutant tau mimics features of human tauopathies and provides a model for investigating the pathogenesis of diseases with NFT.

1,262 citations


Journal ArticleDOI
TL;DR: Knowledge of the molecular mechanisms of apoptosis is providing insights into the causes of multiple pathologies where aberrant cell death regulation occurs and is beginning to provide new approaches to the treatment of human diseases.
Abstract: Programmed cell death plays critical roles in a wide variety of physiological processes during fetal development and in adult tissues. In most cases, physiological cell death occurs by apoptosis as opposed to necrosis. Defects in apoptotic cell death regulation contribute to many diseases, including disorders where cell accumulation occurs (cancer, restenosis) or where cell loss ensues (stroke, heart failure, neurodegeneration, AIDS). In recent years, the molecular machinery responsible for apoptosis has been elucidated, revealing a family of intracellular proteases, the caspases, which are responsible directly or indirectly for the morphological and biochemical changes that characterize the phenomenon of apoptosis. Diverse regulators of the caspases have also been discovered, including activators and inhibitors of these cell death proteases. Inputs from signal transduction pathways into the core of the cell death machinery have also been identified, demonstrating ways of linking environmental stimuli to cell death responses or cell survival maintenance. Knowledge of the molecular mechanisms of apoptosis is providing insights into the causes of multiple pathologies where aberrant cell death regulation occurs and is beginning to provide new approaches to the treatment of human diseases.

1,215 citations


Journal ArticleDOI
TL;DR: The evidence for a disturbance of glutathione homeostasis that may either lead to or result from oxidative stress in neurodegenerative disorders is reviewed.
Abstract: There is significant evidence that the pathogenesis of several neurodegenerative diseases, including Parkinson’s disease, Alzheimer’s disease, Friedreich’s ataxia and amyotrophic lateral sclerosis, may involve the generation of reactive oxygen species and mitochondrial dysfunction. Here, we review the evidence for a disturbance of glutathione homeostasis that may either lead to or result from oxidative stress in neurodegenerative disorders. Glutathione is an important intracellular antioxidant that protects against a variety of different antioxidant species. An important role for glutathione was proposed for the pathogenesis of Parkinson’s disease, because a decrease in total glutathione concentrations in the substantia nigra has been observed in preclinical stages, at a time at which other biochemical changes are not yet detectable. Because glutathione does not cross the blood‐brain barrier other treatment options to increase brain concentrations of glutathione including glutathione analogs, mimetics or precursors are discussed.

1,188 citations


Journal ArticleDOI
TL;DR: Significant evidence is outlined from multiidisciplinary approaches for amyloid beta-peptide-associated free radical oxidative stress and neurotoxicity and protection against these oxidative processes and cell death by free radical scavengers and the strong evidence supporting the notion that the single methionine residue of amyloids beta- peptide is vital to the oxidative Stress and neurotoxicological properties of this peptide.

719 citations


Journal ArticleDOI
14 Apr 2000-Science
TL;DR: Caspases play an instrumental role in neurodegeneration in transgenic mSOD1(G93A) mice, which suggests that caspase inhibition may have a protective role in ALS.
Abstract: Mutations in the copper/zinc superoxide dismutase (SOD1) gene produce an animal model of familial amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disorder. To test a new therapeutic strategy for ALS, we examined the effect of caspase inhibition in transgenic mice expressing mutant human SOD1 with a substitution of glycine to alanine in position 93 (mSOD1(G93A)). Intracerebroventricular administration of zVAD-fmk, a broad caspase inhibitor, delays disease onset and mortality. Moreover, zVAD-fmk inhibits caspase-1 activity as well as caspase-1 and caspase-3 mRNA up-regulation, providing evidence for a non-cell-autonomous pathway regulating caspase expression. Caspases play an instrumental role in neurodegeneration in transgenic mSOD1(G93A) mice, which suggests that caspase inhibition may have a protective role in ALS.

707 citations


Journal ArticleDOI
TL;DR: The main focus of this short review is recent results on glutathione metabolism of brain astrocytes and neurons in culture, which show that these two types of cell prefer different extracellular precursors for glutATHione.
Abstract: The cells of the adult human brain consume approximately 20% of the oxygen utilized by the body although the brain comprises only 2% of the body weight. Reactive oxygen species, which are produced continuously during oxidative metabolism, are generated at high rates within the brain. Therefore, the defense against the toxic effects of reactive oxygen species is an essential task within the brain. An important component of the cellular detoxification of reactive oxygen species is the antioxidant glutathione. The main focus of this short review is recent results on glutathione metabolism of brain astrocytes and neurons in culture. These two types of cell prefer different extracellular precursors for glutathione. Glutathione is involved in the disposal of exogenous peroxides by astrocytes and neurons. In coculture astrocytes protect neurons against the toxicity of reactive oxygen species. One mechanism of this interaction is the supply by astrocytes of glutathione precursors to neurons.

Journal ArticleDOI
TL;DR: The mechanisms regulating the expression and action of IL-1 are poorly understood, but involve multiple effects on neuronal, glial and endothelial cell function and provide an attractive and intensely competitive target for therapeutic intervention.

Journal ArticleDOI
TL;DR: Results suggest that abnormal accumulation of α-synuclein could lead to mitochondrial alterations that may result in oxidative stress and, eventually, cell death.
Abstract: Abnormal accumulation of the presynaptic protein α-synuclein has recently been implicated in the pathogenesis of Alzheimer’s and Parkinson’s diseases. Because neurodegeneration in these conditions might be associated with mitochondrial dysfunction and oxidative stress, the effects of α-synuclein were investigated in a hypothalamic neuronal cell line (GT1-7). α-Synuclein overexpression in these cells resulted in formation of α-synuclein-immunopositive inclusion-like structures and mitochondrial alterations accompanied by increased levels of free radicals and decreased secretion of gonadotropin-releasing hormone. These alterations were ameliorated by pretreatment with anti-oxidants such as vitamin E. Taken together these results suggest that abnormal accumulation of α-synuclein could lead to mitochondrial alterations that may result in oxidative stress and, eventually, cell death.

Journal ArticleDOI
02 Nov 2000-Nature
TL;DR: It is shown that high levels of wild-type ataxin-1 can cause degenerative phenotypes similar to those caused by the expanded protein, and may be relevant to the treatment of polyglutamine diseases and, perhaps, to other neurodegenerative diseases, such as Alzheimer's and Parkinson's disease.
Abstract: A growing number of human neurodegenerative diseases result from the expansion of a glutamine repeat in the protein that causes the disease. Spinocerebellar ataxia type 1 (SCA1) is one such disease-caused by expansion of a polyglutamine tract in the protein ataxin-1. To elucidate the genetic pathways and molecular mechanisms underlying neuronal degeneration in this group of diseases, we have created a model system for SCA1 by expressing the full-length human SCA1 gene in Drosophila. Here we show that high levels of wild-type ataxin-1 can cause degenerative phenotypes similar to those caused by the expanded protein. We conducted genetic screens to identify genes that modify SCA1-induced neurodegeneration. Several modifiers highlight the role of protein folding and protein clearance in the development of SCA1. Furthermore, new mechanisms of polyglutamine pathogenesis were revealed by the discovery of modifiers that are involved in RNA processing, transcriptional regulation and cellular detoxification. These findings may be relevant to the treatment of polyglutamine diseases and, perhaps, to other neurodegenerative diseases, such as Alzheimer's and Parkinson's disease.

Journal ArticleDOI
TL;DR: The finding that cannabinoid receptors are dramatically reduced in all regions of the basal ganglia in advance of other receptor changes in Huntington's disease suggests a possible role for cannabinoids in the progression of neurodegeneration in Huntington't disease.

Journal ArticleDOI
TL;DR: It is shown that iron and free radical generators, such as dopamine or hydrogen peroxide, stimulate the production of intracellular aggregates that contain α-synuclein and ubiquitin, which raises the possibility that α- synuclein acts in concert with iron and dopamine to induce formation of Lewy body pathology in PD and cell death in PD.
Abstract: Parkinson's disease (PD) is the most common motor disorder affecting the elderly. PD is characterized by the formation of Lewy bodies and death of dopaminergic neurons. The mechanisms underlying PD are unknown, but the discoveries that mutations in alpha-synuclein can cause familial PD and that alpha-synuclein accumulates in Lewy bodies suggest that alpha-synuclein participates in the pathophysiology of PD. Using human BE-M17 neuroblastoma cells overexpressing wild-type, A53T, or A30P alpha-synuclein, we now show that iron and free radical generators, such as dopamine or hydrogen peroxide, stimulate the production of intracellular aggregates that contain alpha-synuclein and ubiquitin. The aggregates can be identified by immunocytochemistry, electron microscopy, or the histochemical stain thioflavine S. The amount of aggregation occurring in the cells is dependent on the amount of alpha-synuclein expressed and the type of alpha-synuclein expressed, with the amount of alpha-synuclein aggregation following a rank order of A53T > A30P > wild-type > untransfected. In addition to stimulating aggregate formation, alpha-synuclein also appears to induce toxicity. BE-M17 neuroblastoma cells overexpressing alpha-synuclein show up to a fourfold increase in vulnerability to toxicity induced by iron. The vulnerability follows the same rank order as for aggregation. These data raise the possibility that alpha-synuclein acts in concert with iron and dopamine to induce formation of Lewy body pathology in PD and cell death in PD.

Journal ArticleDOI
TL;DR: Decreased levels of BDNF may constitute a lack of trophic support and, thus, may contribute to the degeneration of specific neuronal populations in the AD-affected brain, including the basal forebrain cholinergic system.
Abstract: Background Nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin 3 (NT-3), and neurotrophin 4/5 (NT-4/5) are members of the neurotrophin gene family that support the survival of specific neuronal populations, including those that are affected by neurodegeneration in Alzheimer disease (AD). Objective To determine whether neurotrophin protein levels are altered in the AD-affected brain compared with control brains. Methods We quantitated protein levels of NGF, BDNF, NT-3, and NT-4/5, and calculated neurotrophin/NT-3 ratios in AD-affected postmortem hippocampus, frontal and parietal cortex, and cerebellum, and compared them with age-matched control tissue (patients with AD/controls: hippocampus, 9/9 cases; frontal cortex, 19/9; parietal cortex, 8/5; and cerebellum, 5/7, respectively). We applied highly sensitive and specific enzyme-linked immunosorbent assays in rapid-autopsy–derived brain tissue (mean±SD postmortem interval, 2.57±1.75 h, n=71) to minimize postmortem proteolytic activity. Results Levels of BDNF were significantly reduced in hippocampus and parietal cortex ( P P P P P P Conclusion Decreased levels of BDNF may constitute a lack of trophic support and, thus, may contribute to the degeneration of specific neuronal populations in the AD-affected brain, including the basal forebrain cholinergic system.

Journal ArticleDOI
TL;DR: It is shown that addition of 4 mM d-beta-hydroxybutyrate protected cultured mesencephalic neurons from MPP(+) toxicity and hippocampal neurons from Abeta(1-42) toxicity, suggesting that ketone bodies may play a therapeutic role in these most common forms of human neurodegeneration.
Abstract: The heroin analogue 1-methyl-4-phenylpyridinium, MPP(+), both in vitro and in vivo, produces death of dopaminergic substantia nigral cells by inhibiting the mitochondrial NADH dehydrogenase multienzyme complex, producing a syndrome indistinguishable from Parkinson's disease. Similarly, a fragment of amyloid protein, Abeta(1-42), is lethal to hippocampal cells, producing recent memory deficits characteristic of Alzheimer's disease. Here we show that addition of 4 mM d-beta-hydroxybutyrate protected cultured mesencephalic neurons from MPP(+) toxicity and hippocampal neurons from Abeta(1-42) toxicity. Our previous work in heart showed that ketone bodies, normal metabolites, can correct defects in mitochondrial energy generation. The ability of ketone bodies to protect neurons in culture suggests that defects in mitochondrial energy generation contribute to the pathophysiology of both brain diseases. These findings further suggest that ketone bodies may play a therapeutic role in these most common forms of human neurodegeneration.

Journal ArticleDOI
TL;DR: It is suggested that the mechanism of neuronal cell death in both HD and a transgenic mouse model of HD is neither by apoptosis nor by necrosis.
Abstract: Huntington's disease (HD) is a fatal inherited neurodegenerative disorder characterized by personality changes, motor impairment, and subcortical dementia. HD is one of a number of diseases caused by expression of an expanded polyglutamine repeat. We have developed several lines of mice that are transgenic for exon 1 of the HD gene containing an expanded CAG sequence. These mice exhibit a defined neurological phenotype along with neuronal changes that are pathognomonic for the disease. We have previously observed the appearance of neuronal intranuclear inclusions, but did not find evidence for neurodegeneration. In this study, we report that all lines of these mice develop a late onset neurodegeneration within the anterior cingulate cortex, dorsal striatum, and of the Purkinje neurons of the cerebellum. Dying neurons characteristically exhibit neuronal intranuclear inclusions, condensation of both the cytoplasm and nucleus, and ruffling of the plasma membrane while maintaining ultrastructural preservation of cellular organelles. These cells do not develop blebbing of the nucleus or cytoplasm, apoptotic bodies, or fragmentation of DNA. Neuronal death occurs over a period of weeks not hours. We also find degenerating cells of similar appearance within these same regions in brains of patients who had died with HD. We therefore suggest that the mechanism of neuronal cell death in both HD and a transgenic mouse model of HD is neither by apoptosis nor by necrosis.

Journal ArticleDOI
TL;DR: Recent advances in the understanding of the role of genetics and oxidative stress in the pathogenesis of PD are reviewed.

Journal ArticleDOI
TL;DR: Results indicate that interference of transcription by the binding of TAFII130 with expanded polyQ stretches is involved in the pathogenetic mechanisms underlying neurodegeneration.
Abstract: At least eight inherited neurodegenerative diseases are caused by expanded CAG repeats encoding polyglutamine (polyQ) stretches. Although cytotoxicities of expanded polyQ stretches are implicated, the molecular mechanisms of neurodegeneration remain unclear. We found that expanded polyQ stretches preferentially bind to TAFII130, a coactivator involved in cAMP-responsive element binding protein (CREB)-dependent transcriptional activation, and strongly suppress CREB-dependent transcriptional activation. The suppression of CREB-dependent transcription and the cell death induced by polyQ stretches were restored by the co-expression of TAFII130. Our results indicate that interference of transcription by the binding of TAFII130 with expanded polyQ stretches is involved in the pathogenetic mechanisms underlying neurodegeneration.

Journal ArticleDOI
TL;DR: The continued expression of activated caspase-3 and the persistence of cells with an apoptotic morphology for days after HI suggests a prolonged role for apoptosis in neonatal hypoxic ischemic brain injury.
Abstract: Birth asphyxia can cause moderate to severe brain injury. It is unclear to what degree apoptotic or necrotic mechanisms of cell death account for damage after neonatal hypoxia-ischemia (HI). In a 7-d-old rat HI model, we determined the contributions of apoptosis and necrosis to neuronal injury in adjacent Nissl-stained, hematoxylin and eosin-stained, and terminal deoxynucleotidyl transferase-mediated UTP nick end-labeled sections. We found an apoptotic-necrotic continuum in the morphology of injured neurons in all regions examined. Eosinophilic necrotic neurons, typical in adult models, were rarely observed in neonatal HI. Electron microscopic analysis showed "classic" apoptotic and necrotic neurons and "hybrid" cells with intermediate characteristics. The time course of apoptotic injury varied regionally. In CA3, dentate gyrus, medial habenula, and laterodorsal thalamus, the density of apoptotic cells was highest at 24-72 hr after HI and then declined. In contrast, densities remained elevated from 12 hr to 7 d after HI in most cortical areas and in the basal ganglia. Temporal and regional patterns of neuronal death were compared with expression of caspase-3, a cysteine protease involved in the execution phase of apoptosis. Immunocytochemical and Western blot analyses showed increased caspase-3 expression in damaged hemispheres 24 hr to 7 d after HI. A p17 peptide fragment, which results from the proteolytic activation of the caspase-3 precursor, was detected in hippocampus, thalamus, and striatum but not in cerebral cortex. The continued expression of activated caspase-3 and the persistence of cells with an apoptotic morphology for days after HI suggests a prolonged role for apoptosis in neonatal hypoxic ischemic brain injury.

Journal ArticleDOI
TL;DR: This lysosomal storage disease has parallels to other neurodegenerative disorders, such as Alzheimer's and prion diseases, where inflammatory processes are believed to participate directly in neuronal cell death.
Abstract: Sandhoff disease is a lysosomal storage disorder characterized by the absence of β-hexosaminidase and storage of GM2 ganglioside and related glycolipids in the central nervous system. The glycolipid storage causes severe neurodegeneration through a poorly understood pathogenic mechanism. In symptomatic Sandhoff disease mice, apoptotic neuronal cell death was prominent in the caudal regions of the brain. cDNA microarray analysis to monitor gene expression during neuronal cell death revealed an upregulation of genes related to an inflammatory process dominated by activated microglia. Activated microglial expansion, based on gene expression and histologic analysis, was found to precede massive neuronal death. Extensive microglia activation also was detected in a human case of Sandhoff disease. Bone marrow transplantation of Sandhoff disease mice suppressed both the explosive expansion of activated microglia and the neuronal cell death without detectable decreases in neuronal GM2 ganglioside storage. These results suggest a mechanism of neurodegeneration that includes a vigorous inflammatory response as an important component. Thus, this lysosomal storage disease has parallels to other neurodegenerative disorders, such as Alzheimer's and prion diseases, where inflammatory processes are believed to participate directly in neuronal cell death.

Journal ArticleDOI
TL;DR: It is shown that mediators of neurodegeneration induce the rapid formation of transient or persistent rod-like inclusions containing ADF/cofilin and actin in axons and dendrites of cultured hippocampal neurons, suggesting a common pathway that can lead to loss of synapses.
Abstract: Inclusions containing actin-depolymerizing factor (ADF) and cofilin, abundant proteins in adult human brain, are prominent in hippocampal and cortical neurites of the post-mortem brains of Alzheimer's patients, especially in neurites contacting amyloid deposits The origin and role of these inclusions in neurodegeneration are, however, unknown Here we show that mediators of neurodegeneration induce the rapid formation of transient or persistent rod-like inclusions containing ADF/cofilin and actin in axons and dendrites of cultured hippocampal neurons Rods form spontaneously within neurons overexpressing active ADF/cofilin, suggesting that the activation (by dephosphorylation) of ADF/cofilin that occurs in response to neurodegenerative stimuli is sufficient to induce rod formation Persistent rods that span the diameter of the neurite disrupt microtubules and cause degeneration of the distal neurite without killing the neuron These findings suggest a common pathway that can lead to loss of synapses

Journal ArticleDOI
TL;DR: Examination of BDNF expression in the brains of patients who had suffered from Huntington disease suggests that a BDNF surplus may have beneficial effects in the treatment of HD, and demonstrates selective BDNF decay in regions that are vulnerable to HD.

Journal ArticleDOI
TL;DR: Although little has been learned about its normal function, α-synuclein appears to interact with a variety of proteins and membrane phospholipids, and may therefore participate in a number of signaling pathways and play a role in regulating cell differentiation, synaptic plasticity, cell survival, and dopaminergic neurotransmission.
Abstract: The involvement of α-synuclein in neurodegenerative diseases was first suspected after the isolation of an α-synuclein fragment (NAC) from amyloid plaques in Alzheimer's disease (AD). Later, two different α-synuclein mutations were shown to be associated with autosomal-dominant Parkinson's disease (PD), but only in a small number of families. However, the discovery that α-synuclein is a major component of Lewy bodies and Lewy neurites, the pathological hallmarks of PD, confirmed its role in PD pathogenesis. Pathological aggregation of the protein might be responsible for neurodegeneration. In addition, soluble oligomers of α-synuclein might be even more toxic than the insoluble fibrils found in Lewy bodies. Multiple factors have been shown to accelerate α-synuclein aggregation in vitro. Therapeutic strategies aimed to prevent this aggregation are therefore envisaged. Although little has been learned about its normal function, α-synuclein appears to interact with a variety of proteins and membrane phospholipids, and may therefore participate in a number of signaling pathways. In particular, it may play a role in regulating cell differentiation, synaptic plasticity, cell survival, and dopaminergic neurotransmission. Thus, pathological mechanisms based on disrupted normal function are also possible.

Journal ArticleDOI
TL;DR: Data is summarized that support the involvement of oxidative stress as an active factor in A beta-mediated neuropathology, by triggering or facilitating neurodegeneration, through a wide range of molecular events that disturb neuronal cell homeostasis.

Journal ArticleDOI
TL;DR: In a Drosophila: disease model, it is demonstrated that chaperones show substrate specificity for polyglutamine protein, as well as synergy in suppression of neurotoxicity, and chaperone modulation of neurodegeneration in vivo is associated with altered biochemical properties of the mutant polyglUTamine protein.
Abstract: At least eight dominant human neurodegenerative diseases are due to the expansion of a polyglutamine within the disease proteins. This confers toxicity on the proteins and is associated with nuclear inclusion formation. Recent findings indicate that molecular chaperones can modulate polyglutamine pathogenesis, but the basis of polyglutamine toxicity and the mechanism by which chaperones suppress neurodegeneration remains unknown. In a Drosophila: disease model, we demonstrate that chaperones show substrate specificity for polyglutamine protein, as well as synergy in suppression of neurotoxicity. Our analysis also reveals that chaperones alter the solubility properties of the protein, indicating that chaperone modulation of neurodegeneration in vivo is associated with altered biochemical properties of the mutant polyglutamine protein. These findings have implications for these and other human neurodegenerative diseases associated with abnormal protein aggregation.

Journal ArticleDOI
TL;DR: Immunohistochemistry confirms the increase of oxidative damage to DNA predominantly located in the cytoplasmic compartment of cells in chronic active plaques and suggests that oxidativeDamage to macromolecules develops in association with inflammation in the CNS, and may contribute to a decline of energy metabolism in affected cells.

Journal ArticleDOI
TL;DR: New data now directly implicate cathepsins as proteases capable of initiating, as well as executing, cell death programs in certain pathologic states, which support the view that the progressive alterations of lysosomal function observed during aging and Alzheimer's disease contribute importantly to the neurodegenerative process in Alzheimer’s disease.
Abstract: A prominent feature of brain pathology in Alzheimer's disease is a robust activation of the neuronal lysosomal system and major cellular pathways converging on the lysosome, namely, endocytosis and autophagy. Recent studies that identify a disturbance of the endocytic pathway as one of the earliest known manifestation of Alzheimer's disease provide insight into how β-amyloidogenesis might be promoted in sporadic Alzheimer's disease, the most prevalent and least well understood form of the disease. Primary lysosomal dysfunction has historically been linked to neurodegeneration. New data now directly implicate cathepsins as proteases capable of initiating, as well as executing, cell death programs in certain pathologic states. These and other studies support the view that the progressive alterations of lysosomal function observed during aging and Alzheimer's disease contribute importantly to the neurodegenerative process in Alzheimer's disease.