scispace - formally typeset
Search or ask a question

Showing papers on "Neurodegeneration published in 2003"


Journal ArticleDOI
11 Sep 2003-Neuron
TL;DR: PD models based on the manipulation of PD genes should prove valuable in elucidating important aspects of the disease, such as selective vulnerability of substantia nigra dopaminergic neurons to the degenerative process.

4,872 citations


Journal ArticleDOI
10 Jan 2003-Science
TL;DR: It is shown that DJ-1 mutations are associated with PARK7, a monogenic form of human parkinsonism, and these findings indicate that loss ofDJ-1 function leads to neurodegeneration.
Abstract: The DJ-1 gene encodes a ubiquitous, highly conserved protein. Here, we show that DJ-1 mutations are associated with PARK7, a monogenic form of human parkinsonism. The function of the DJ-1 protein remains unknown, but evidence suggests its involvement in the oxidative stress response. Our findings indicate that loss of DJ-1 function leads to neurodegeneration. Elucidating the physiological role of DJ-1 protein may promote understanding of the mechanisms of brain neuronal maintenance and pathogenesis of Parkinson's disease.

2,666 citations


Journal ArticleDOI
TL;DR: Recent biophysical studies aimed at elucidating the precise mechanism of in vitro aggregation and animal modeling studies support the emerging notion that an ordered prefibrillar oligomer, or protofibril, may be responsible for cell death and that the fibril form that is typically observed at autopsy may actually be neuroprotective.
Abstract: Many neurodegenerative diseases, including Alzheimer's and Parkinson's and the transmissible spongiform encephalopathies (prion diseases), are characterized at autopsy by neuronal loss and protein aggregates that are typically fibrillar. A convergence of evidence strongly suggests that protein aggregation is neurotoxic and not a product of cell death. However, the identity of the neurotoxic aggregate and the mechanism by which it disables and eventually kills a neuron are unknown. Both biophysical studies aimed at elucidating the precise mechanism of in vitro aggregation and animal modeling studies support the emerging notion that an ordered prefibrillar oligomer, or protofibril, may be responsible for cell death and that the fibrillar form that is typically observed at autopsy may actually be neuroprotective. A subpopulation of protofibrils may function as pathogenic amyloid pores. An analogous mechanism may explain the neurotoxicity of the prion protein; recent data demonstrates that the disease-associated, infectious form of the prion protein differs from the neurotoxic species. This review focuses on recent experimental studies aimed at identification and characterization of the neurotoxic protein aggregates.

1,690 citations


Journal ArticleDOI
31 Oct 2003-Science
TL;DR: Strategies aimed at restoring complex I activity, reducing oxidative stress and α-synuclein aggregation, and enhancing protein degradation may hold particular promise as powerful neuroprotective agents in the treatment of PD.
Abstract: Parkinson's disease (PD) is a complex disorder with many different causes, yet they may intersect in common pathways, raising the possibility that neuroprotective agents may have broad applicability in the treatment of PD. Current evidence suggests that mitochondrial complex I inhibition may be the central cause of sporadic PD and that derangements in complex I cause α-synuclein aggregation, which contributes to the demise of dopamine neurons. Accumulation and aggregation of α-synuclein may further contribute to the death of dopamine neurons through impairments in protein handling and detoxification. Dysfunction of parkin (a ubiquitin E3 ligase) and DJ-1 could contribute to these deficits. Strategies aimed at restoring complex I activity, reducing oxidative stress and α-synuclein aggregation, and enhancing protein degradation may hold particular promise as powerful neuroprotective agents in the treatment of PD.

1,606 citations


Journal ArticleDOI
TL;DR: The aim of this article is to review the literature on the molecular mechanism of protein misfolding and aggregation, its role in Neurodegeneration and the potential targets for therapeutic intervention in neurodegenerative diseases.
Abstract: Recent evidence indicates that diverse neurodegenerative diseases might have a common cause and pathological mechanism — the misfolding, aggregation and accumulation of proteins in the brain, resulting in neuronal apoptosis. Studies from different disciplines strongly support this hypothesis and indicate that a common therapy for these devastating disorders might be possible. The aim of this article is to review the literature on the molecular mechanism of protein misfolding and aggregation, its role in neurodegeneration and the potential targets for therapeutic intervention in neurodegenerative diseases. Many questions still need to be answered and future research in this field will result in exciting new discoveries that might impact other areas of biology.

1,355 citations


Journal ArticleDOI
TL;DR: Recent advances on the study of the role of microglia based on findings from animal and cell culture models in the pathogenesis of neurodegenerative diseases, with particular emphasis on Parkinson's disease are summarized.
Abstract: Evidence from postmortem analysis implicates the involvement of microglia in the neurodegenerative process of several degenerative neurological diseases, including Alzheimer's disease and Parkinson's disease. It remains to be determined, however, whether microglial activation plays a role in the initiation stage of disease progression or occurs merely as a response to neuronal death. Activated microglia secrete a variety of proinflammatory and neurotoxic factors that are believed to induce and/or exacerbate neurodegeneration. In this article, we summarize recent advances on the study of the role of microglia based on findings from animal and cell culture models in the pathogenesis of neurodegenerative diseases, with particular emphasis on Parkinson's disease. In addition, we also discuss novel approaches to potential therapeutic strategies.

1,069 citations


Journal ArticleDOI
TL;DR: A mechanistic link among innate immunity, TLRs, and neurodegeneration is demonstrated and microglia is identified as the major lipopolysaccharide-responsive cell in the CNS.
Abstract: Innate immunity is an evolutionarily ancient system that provides organisms with immediately available defense mechanisms through recognition of pathogen-associated molecular patterns. We show that in the CNS, specific activation of innate immunity through a Toll-like receptor 4 (TLR4)-dependent pathway leads to neurodegeneration. We identify microglia as the major lipopolysaccharide (LPS)-responsive cell in the CNS. TLR4 activation leads to extensive neuronal death in vitro that depends on the presence of microglia. LPS leads to dramatic neuronal loss in cultures prepared from wild-type mice but does not induce neuronal injury in CNS cultures derived from tlr4 mutant mice. In an in vivo model of neurodegeneration, stimulating the innate immune response with LPS converts a subthreshold hypoxic-ischemic insult from no discernable neuronal injury to severe axonal and neuronal loss. In contrast, animals bearing a loss-of-function mutation in the tlr4 gene are resistant to neuronal injury in the same model. The present study demonstrates a mechanistic link among innate immunity, TLRs, and neurodegeneration.

968 citations


Journal ArticleDOI
TL;DR: Preclinical trials with suberoylanilide hydroxamic acid (SAHA), a potent HDAC inhibitor, show that SAHA crosses the blood–brain barrier and increases histone acetylation in the brain, clearly validating the pursuit of this class of compounds as HD therapeutics.
Abstract: Huntington's disease (HD) is an inherited, progressive neurological disorder that is caused by a CAG/polyglutamine repeat expansion and for which there is no effective therapy. Recent evidence indicates that transcriptional dysregulation may contribute to the molecular pathogenesis of this disease. Supporting this view, administration of histone deacetylase (HDAC) inhibitors has been shown to rescue lethality and photoreceptor neurodegeneration in a Drosophila model of polyglutamine disease. To further explore the therapeutic potential of HDAC inhibitors, we have conducted preclinical trials with suberoylanilide hydroxamic acid (SAHA), a potent HDAC inhibitor, in the R6/2 HD mouse model. We show that SAHA crosses the blood-brain barrier and increases histone acetylation in the brain. We found that SAHA could be administered orally in drinking water when complexed with cyclodextrins. SAHA dramatically improved the motor impairment in R6/2 mice, clearly validating the pursuit of this class of compounds as HD therapeutics.

862 citations


Journal ArticleDOI
TL;DR: The natural history of HD-related changes in the YAC128 mice has been defined, demonstrating the presence of huntingtin inclusions after the onset of behavior and neuropathological changes and making it an ideal mouse model for the assessment of neuroprotective and other therapeutic interventions.
Abstract: An expanded CAG repeat is the underlying genetic defect in Huntington disease, a disorder characterized by motor, psychiatric and cognitive deficits and striatal atrophy associated with neuronal loss. An accurate animal model of this disease is crucial for elucidation of the underlying natural history of the illness and also for testing experimental therapeutics. We established a new yeast artificial chromosome (YAC) mouse model of HD with the entire human HD gene containing 128 CAG repeats (YAC128) which develops motor abnormalities and age-dependent brain atrophy including cortical and striatal atrophy associated with striatal neuronal loss. YAC128 mice exhibit initial hyperactivity, followed by the onset of a motor deficit and finally hypokinesis. The motor deficit in the YAC128 mice is highly correlated with striatal neuronal loss, providing a structural correlate for the behavioral changes. The natural history of HD-related changes in the YAC128 mice has been defined, demonstrating the presence of huntingtin inclusions after the onset of behavior and neuropathological changes. The HD-related phenotypes of the YAC128 mice show phenotypic uniformity with low inter-animal variability present, which together with the age-dependent striatal neurodegeneration make it an ideal mouse model for the assessment of neuroprotective and other therapeutic interventions.

802 citations


Journal ArticleDOI
TL;DR: It is shown that cultured adult mouse astrocytes migrate in response to monocyte chemoattractant protein-1 (MCP-1), a chemokine present in AD lesions, and cease migration upon interaction with immobilized Aβ1–42, which suggests a novel mechanism for the accumulation of Astrocytes around Aβ deposits.
Abstract: Alzheimer disease (AD) is a progressive neurodegenerative disorder characterized by excessive deposition of amyloid-beta (Abeta) peptides in the brain. One of the earliest neuropathological changes in AD is the accumulation of astrocytes at sites of Abeta deposition, but the cause or significance of this cellular response is unclear. Here we show that cultured adult mouse astrocytes migrate in response to monocyte chemoattractant protein-1 (MCP-1), a chemokine present in AD lesions, and cease migration upon interaction with immobilized Abeta(1-42). We also show that astrocytes bind and degrade Abeta(1-42). Astrocytes plated on Abeta-laden brain sections from a mouse model of AD associate with the Abeta deposits and reduce overall Abeta levels in these sections. Our results suggest a novel mechanism for the accumulation of astrocytes around Abeta deposits, indicate a direct role for astrocytes in degradation of Abeta and implicate deficits in astroglial clearance of Abeta in the pathogenesis of AD. Treatments that increase removal of Abeta by astrocytes may therefore be a critical mechanism to reduce the neurodegeneration associated with AD.

802 citations


Journal ArticleDOI
TL;DR: The importance of Ca(2+) regulation in mammalian neurons and the excitotoxicity hypothesis is summarized, and the molecular determinants of glutamate receptor-mediated excitOToxic mechanisms are focused on.

Journal ArticleDOI
TL;DR: A better understanding of the role of oxidants in neurodegeneration still holds a largely unfulfilled potential to reduce the burden of both acute and chronic neurodegenersation.
Abstract: Oxidation and nitration of proteins, DNA, and lipids are markers of neurodegeneration in postmortem tissues. It is impossible to determine with certainty using postmortem analysis, whether oxidative stress has a primary role in neurodegeneration or is a secondary end-stage epiphenomenon. Growing evidence suggests that the generation of oxidants does not result simply from an accidental disruption of aerobic metabolism, but rather from an active process crucial for the nonspecific immune defenses of the brain. While essential for survival, these processes may be inappropriately activated to cause neurodegeneration. Neurons are highly susceptible to oxidative stress, which can induce both neuronal necrosis and apoptosis. Oxidants may also have more subtle roles in compromising the integrity of the bloodbrain barrier and in producing reactive changes in astrocytes that further propagate injury. Moreover, oxidative stress appears to provide a critical link between environmental factors, such as exposure to pesticides, herbicides, and heavy metals, and endogenous and genetic risk factors in the pathogenic mechanisms of neurodegeneration, particularly in Parkinson disease. Here, we discuss some recent insights into the diverse roles and controversies about the role of oxidants in neurodegeneration. A better understanding of the role of oxidants in neurodegeneration still holds a largely unfulfilled potential to reduce the burden of both acute and chronic neurodegeneration.

Journal ArticleDOI
TL;DR: Elucidating the detailed mechanism of Presenilin processing of membrane proteins is important for understanding diverse signal transduction pathways and potentially for treating and preventing Alzheimer's disease.
Abstract: Intensive studies of three proteins--Presenilin, Notch, and the amyloid precursor protein (APP)--have led to the recognition of a direct intersection between early development and late-life neurodegeneration. Notch signaling mediates many different intercellular communication events that are essential for determining the fates of neural and nonneural cells during development and in the adult. The Notch receptor acts in a core pathway as a membrane-bound transcription factor that is released to the nucleus by a two-step cleavage mechanism called regulated intramembrane proteolysis (RIP). The second cleavage is effected by Presenilin, an unusual polytopic aspartyl protease that apparently cleaves Notch and numerous other single-transmembrane substrates within the lipid bilayer. Another Presenilin substrate, APP, releases the amyloid ss-protein that can accumulate over time in limbic and association cortices and help initiate Alzheimer's disease. Elucidating the detailed mechanism of Presenilin processing of membrane proteins is important for understanding diverse signal transduction pathways and potentially for treating and preventing Alzheimer's disease.

Journal ArticleDOI
TL;DR: Findings strengthen the hypothesis that transcriptional dysfunction plays a role in the pathogenesis of HD and suggest that therapies aimed at modulating transcription may target early pathological events and provide clinical benefits to HD patients.
Abstract: The precise cause of neuronal death in Huntington's disease (HD) is unknown. Although no single specific protein-protein interaction of mutant huntingtin has emerged as the pathologic trigger, transcriptional dysfunction may contribute to the neurodegeneration observed in HD. Pharmacological treatment using the histone deacetylase inhibitor sodium butyrate to modulate transcription significantly extended survival in a dose-dependent manner, improved body weight and motor performance, and delayed the neuropathological sequelae in the R6/2 transgenic mouse model of HD. Sodium butyrate also increased histone and Specificity protein-1 acetylation and protected against 3-nitropropionic acid neurotoxicity. Microarray analysis showed increased expression of α- and β-globins and MAP kinase phosphatase-1 in sodium butyrate-treated R6/2 mice, indicative of improved oxidative phosphorylation and transcriptional regulation. These findings strengthen the hypothesis that transcriptional dysfunction plays a role in the pathogenesis of HD and suggest that therapies aimed at modulating transcription may target early pathological events and provide clinical benefits to HD patients.

Journal ArticleDOI
TL;DR: It is demonstrated that targeting COX-2 does not protect against MPTP-induced dopaminergic neurodegeneration by mitigating inflammation, and evidence is provided that COx-2 inhibition prevents the formation of the oxidant species dopamine-quinone, which has been implicated in the pathogenesis of PD.
Abstract: Parkinson's disease (PD) is a neurodegenerative disorder of uncertain pathogenesis characterized by the loss of the nigrostriatal dopaminergic neurons, which can be modeled by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Increased expression of cyclooxygenase type 2 (COX-2) and production of prostaglandin E2 have been implicated in neurodegeneration in several pathological settings. Here we show that COX-2, the rate-limiting enzyme in prostaglandin E2 synthesis, is up-regulated in brain dopaminergic neurons of both PD and MPTP mice. COX-2 induction occurs through a JNK/c-Jun-dependent mechanism after MPTP administration. We demonstrate that targeting COX-2 does not protect against MPTP-induced dopaminergic neurodegeneration by mitigating inflammation. Instead, we provide evidence that COX-2 inhibition prevents the formation of the oxidant species dopamine-quinone, which has been implicated in the pathogenesis of PD. This study supports a critical role for COX-2 in both the pathogenesis and selectivity of the PD neurodegenerative process. Because of the safety record of the COX-2 inhibitors, and their ability to penetrate the blood–brain barrier, these drugs may be therapies for PD.

Journal ArticleDOI
TL;DR: A critical role for NADPH-oxidase is supported in the pathogenesis of PD and it is suggested that targeting this enzyme or enhancing extracellular antioxidants may provide novel therapies for PD.
Abstract: Parkinson's disease (PD) is a neurodegenerative disorder of uncertain pathogenesis characterized by a loss of substantia nigra pars compacta (SNpc) dopaminergic (DA) neurons, and can be modeled by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Both inflammatory processes and oxidative stress may contribute to MPTP- and PD-related neurodegeneration. However, whether inflammation may cause oxidative damage in MPTP and PD is unknown. Here we show that NADPH-oxidase, the main reactive oxygen species (ROS)-producing enzyme during inflammation, is up-regulated in SNpc of human PD and MPTP mice. These changes coincide with the local production of ROS, microglial activation, and DA neuronal loss seen after MPTP injections. Mutant mice defective in NADPH-oxidase exhibit less SNpc DA neuronal loss and protein oxidation than their WT littermates after MPTP injections. We show that extracellular ROS are a main determinant in inflammation-mediated DA neurotoxicity in the MPTP model of PD. This study supports a critical role for NADPH-oxidase in the pathogenesis of PD and suggests that targeting this enzyme or enhancing extracellular antioxidants may provide novel therapies for PD.

Journal ArticleDOI
30 Oct 2003-Neuron
TL;DR: Cumulative findings provide compelling evidence that in vivo deregulation of Cdk5 by p25 plays a causative role in neurodegeneration and the development of neurofibrillary pathology.

Journal ArticleDOI
TL;DR: It is suggested that failure of the ubiquitin-proteasome system to adequately clear unwanted proteins may underlie vulnerability and degeneration of the SNc in both sporadic and familial PD.

Journal ArticleDOI
TL;DR: Findings from in vitro and in vivo animal experiments relevant for human neurodegenerative diseases and brain damage are reviewed together with the results of studies on traumatic, ischemic, and inflammatory brain damage as well as neurodegenersative and psychiatric disorders.
Abstract: S100B is a calcium-binding peptide produced mainly by astrocytes that exert paracrine and autocrine effects on neurons and glia. Some knowledge has been acquired from in vitro and in vivo animal experiments to understand S100B's roles in cellular energy metabolism, cytoskeleton modification, cell proliferation, and differentiation. Also, insights have been gained regarding the interaction between S100B and the cerebral immune system, and the regulation of S100B activity through serotonergic transmission. Secreted glial S100B exerts trophic or toxic effects depending on its concentration. At nanomolar concentrations, S100B stimulates neurite outgrowth and enhances survival of neurons during development. In contrast, micromolar levels of extracellular S100B in vitro stimulate the expression of proinflammatory cytokines and induce apoptosis. In animal studies, changes in the cerebral concentration of S100B cause behavioral disturbances and cognitive deficits. In humans, increased S100B has been detected with various clinical conditions. Brain trauma and ischemia is associated with increased S100B concentrations, probably due to the destruction of astrocytes. In neurodegenerative, inflammatory and psychiatric diseases, increased S100B levels may be caused by secreted S100B or release from damaged astrocytes. This review summarizes published findings on S100B regarding human brain damage and neurodegeneration. Findings from in vitro and in vivo animal experiments relevant for human neurodegenerative diseases and brain damage are reviewed together with the results of studies on traumatic, ischemic, and inflammatory brain damage as well as neurodegenerative and psychiatric disorders. Methodological problems are discussed and perspectives for future research are outlined.

Journal ArticleDOI
TL;DR: Evidence presented here suggests that apoptosis of neurons is also an essential target for pharmacological studies, which suggests that the vision of people with diabetes will be protected only when the authors have discovered a means to prevent the gradual but constant loss of neurons within the inner retina.
Abstract: Diabetic retinopathy (DR) is a common complication of diabetes and a leading cause of legal blindness in working-age adults. The clinical hallmarks of DR include increased vascular permeability, leading to edema, and endothelial cell proliferation. Much of the research effort has been focused on vascular changes, but it is becoming apparent that other degenerative changes occur beyond the vascular cells of the retina. These include increased apoptosis, glial cell reactivity, microglial activation, and altered glutamate metabolism. When occurring together, these changes may be considered as neurodegenerative and could explain some of the functional deficits in vision that begin soon after the onset of diabetes. This review will present the current evidence that neurodegeneration of the retina is a critical component of DR. There are two basic hypotheses that account for loss of cells in the neural retina. First, the loss of blood-retinal barrier integrity, which initially manifests as an increase in vascular permeability, causes a failure to control the composition of the extracellular fluid in the retina, which in turn leads to edema and neuronal cell loss. Alternatively, diabetes has a direct effect on metabolism within the neural retina, leading to an increase in apoptosis, which in turn causes breakdown of the blood-retinal barrier. It is not clear which hypothesis will be found to be correct, and, in fact, it is likely that vascular permeability and neuronal apoptosis are closely linked components of DR. However, the gradual loss of neurons suggests that progress of the disease is ultimately irreversible, since these cells cannot usually be replaced. In light of this possibility, new treatments for DR should be preventive in nature, being implemented before overt clinical symptoms develop. While vascular permeability is the target that is primarily considered for new treatments of DR, evidence presented here suggests that apoptosis of neurons is also an essential target for pharmacological studies. The vision of people with diabetes will be protected only when we have discovered a means to prevent the gradual but constant loss of neurons within the inner retina.

Journal ArticleDOI
TL;DR: The findings suggest that cells normally secrete α‐syn into their surrounding media, both in vitro and in vivo, and the detection of extracellular α‐ syn and/or its modified forms in body fluids, particularly in human plasma, offers new opportunities for the development of diagnostic tests for PD.
Abstract: Parkinson's disease (PD) and other related disorders are characterized by the accumulation of fibrillar aggregates of alpha-synuclein protein (alpha-syn) inside brain cells. It is likely that the formation of alpha-syn aggregates plays a seminal role in the pathogenesis of at least some of these diseases, because two different mutations in the gene encoding alpha-syn have been found in inherited forms of PD. alpha-Syn is mainly expressed by neuronal cells and is generally considered to exist as a cytoplasmic protein. Here, we report the unexpected identification of alpha-syn in conditioned culture media from untransfected and alpha-syn-transfected human neuroblastoma cells, as well as in human cerebrospinal fluid and blood plasma. The method used was immunocapture by using anti-alpha-syn antibodies coupled to magnetic beads, followed by detection on Western blots. In all cases, alpha-syn was identified as a single 15 kDa band, which co-migrated with a recombinant form of the protein and reacted with five different antibodies to alpha-syn. Our findings suggest that cells normally secrete alpha-syn into their surrounding media, both in vitro and in vivo. The detection of extracellular alpha-syn and/or its modified forms in body fluids, particularly in human plasma, offers new opportunities for the development of diagnostic tests for PD and related diseases.

Journal ArticleDOI
TL;DR: Research in past years has identified several htt-interacting proteins that play roles in clathrin-mediated endocytosis, apoptosis, vesicle transport, cell signalling, morphogenesis and transcriptional regulation, suggesting that htt is also involved in these processes.

Journal ArticleDOI
TL;DR: Microarray studies show relevant changes in gene expression profiles in HD models, providing useful information on the potential consequences of disrupted transcriptional pathways in HD.

Journal ArticleDOI
TL;DR: Several findings suggest an important role of protein nitration in modulating the activity of key enzymes in neurodegenerative disorders, although extensive studies on specific targets of protein Nitration in disease are still missing.
Abstract: Nitration of tyrosine in biological conditions represents a pathological event that is associated with several neurodegenerative diseases, such as amyotrophic lateral sclerosis, Parkinson’s disease and Alzheimer’s disease (AD). Increased levels of nitrated proteins have been reported in AD brain and CSF, demonstrating the potential involvement of reactive nitrogen species (RNS) in neurodegeneration associated with this disease. Reaction of NO with O � : 2 leads to formation of peroxynitrite ONOO – , which following protonation, generates cytotoxic species that oxidize and nitrate proteins. Several findings suggest an important role of protein nitration in modulating the activity of key enzymes in neurodegenerative disorders, although extensive studies on specific targets of protein nitration in disease are still missing. The present investigation represents a further step in understanding the relationship between oxidative modification of protein and neuronal death in AD. We previously applied a proteomics approach to determine specific targets of protein oxidation in AD brain, by successfully coupling immunochemical detection of protein carbonyls with two-dimensional polyacrylamide gel electrophoresis and mass spectrometry analysis. In the present study, we extend our investigation of protein oxidative modification in AD brain to targets of protein nitration. The identification of six targets of protein nitration in AD brain provides evidence to the importance of oxidative stress in the progression of this dementing disease and

Journal ArticleDOI
TL;DR: Evidence is provided of increased progenitor cell proliferation and neurogenesis in the diseased adult human brain and further indicate the regenerative potential of the human brain.
Abstract: Neurogenesis has recently been observed in the adult human brain, suggesting the possibility of endogenous neural repair. However, the augmentation of neurogenesis in the adult human brain in response to neuronal cell loss has not been demonstrated. This study was undertaken to investigate whether neurogenesis occurs in the subependymal layer (SEL) adjacent to the caudate nucleus in the human brain in response to neurodegeneration of the caudate nucleus in Huntington's disease (HD). Postmortem control and HD human brain tissue were examined by using the cell cycle marker proliferating cell nuclear antigen (PCNA), the neuronal marker βIII-tubulin, and the glial cell marker glial fibrillary acidic protein (GFAP). We observed a significant increase in cell proliferation in the SEL in HD compared with control brains. Within the HD group, the degree of cell proliferation increased with pathological severity and increasing CAG repeats in the HD gene. Most importantly, PCNA+ cells were shown to coexpress βIII-tubulin or GFAP, demonstrating the generation of neurons and glial cells in the SEL of the diseased human brain. Our results provide evidence of increased progenitor cell proliferation and neurogenesis in the diseased adult human brain and further indicate the regenerative potential of the human brain.

Journal ArticleDOI
23 Jan 2003-Nature
TL;DR: It is concluded that oligomerization is a crucial determinant in the biochemical properties of expanded polyglutamine that are central to their chronic cytotoxicity.
Abstract: The expansion of a CAG repeat coding for polyglutamine in otherwise unrelated gene products is central to eight neurodegenerative disorders including Huntington's disease1. It has been well documented that expanded polyglutamine fragments, cleaved from their respective full-length proteins, form microscopically visible aggregates in affected individuals and in transgenic mice2,3,4,5,6,7. The contribution of polyglutamine oligomers to neurodegeneration, however, is controversial. The azo-dye Congo red binds preferentially to β-sheets containing amyloid fibrils8,9 and can specifically inhibit oligomerization10 and disrupt preformed oligomers. Here we show that inhibition of polyglutamine oligomerization by Congo red prevents ATP depletion and caspase activation, preserves normal cellular protein synthesis and degradation functions, and promotes the clearance of expanded polyglutamine repeats in vivo and in vitro. Infusion of Congo red into a transgenic mouse model of Huntington's disease, well after the onset of symptoms, promotes the clearance of expanded repeats in vivo and exerts marked protective effects on survival, weight loss and motor function. We conclude that oligomerization is a crucial determinant in the biochemical properties of expanded polyglutamine that are central to their chronic cytotoxicity.

Journal ArticleDOI
TL;DR: This work will discuss recent findings regarding the influence of oxidative stress on neurodegeneration and possible connections between oxidative stress and unscheduled cell cycle reentry, the understanding of which could lead to new strategies in the development of therapeutic agents for Neurodegenerative disorders.
Abstract: While numerous studies have examined the existence of increased reactive oxygen species (ROS) in later-onset neurodegenerative disorders, the mechanism by which neurons die under conditions of oxidative stress remains largely unknown. Fairly recent evidence has suggested that one mechanism linked to the death of terminally differentiated neurons is aberrant reentry into the cell cycle. This phenomenon has been reported in Alzheimer disease (AD) patients (1), Down syndrome patients (2), and several mouse neurodegenerative models (3–5). We will discuss recent findings regarding the influence of oxidative stress on neurodegeneration and possible connections between oxidative stress and unscheduled cell cycle reentry, the understanding of which could lead to new strategies in the development of therapeutic agents for neurodegenerative disorders.

Journal ArticleDOI
TL;DR: The results of these studies have provided leads for the development of neuroprotective strategies for neurodegenerative strategies for these progressive, disabling and often fatal disorders including Parkinson's disease, amyotrophic lateral sclerosis and Huntington's disease as mentioned in this paper.
Abstract: Molecular pathways of programmed cell death (PCD) are activated in various neurodegenerative disorders including Parkinson's disease, amyotrophic lateral sclerosis and Huntington's disease. In these diseases, PCD might be pathogenic, and targeting it might mitigate neurodegeneration. To identify potential neuroprotective targets within the PCD machinery, the expression and activity of some of its components have been altered by genetic or pharmacological means in experimental models of neurodegenerative diseases. The results of these studies have provided leads for the development of neuroprotective strategies for these progressive, disabling and often fatal disorders.

Journal ArticleDOI
TL;DR: It is suggested that the translocation of misfolded proteins to the mitochondrial membrane might play an important role in either triggering or perpetuating neurodegeneration in Alzheimer’s disease and dementia with Lewy bodies.
Abstract: Abnormal interactions and misfolding of synaptic proteins in the nervous system are being extensively explored as important pathogenic events resulting in neurodegeneration in various neurological disorders. These include Alzheimer's disease (AD), Parkinson's disease (PD), and dementia with Lewy bodies (DLB). In AD, misfolded amyloid beta peptide 1-42 (Abeta), a proteolytic product of amyloid precursor protein metabolism, accumulates in the neuronal endoplasmic reticulum and extracellularly as plaques. In contrast, in PD and DLB cases there is abnormal accumulation of alpha-synuclein in neuronal cell bodies, axons, and synapses. Furthermore, in DLB, Abeta 1-42 may promote alpha-synuclein accumulation and neurodegeneration. The central event leading to synaptic and neuronal loss in these diseases is not completely clear yet; however, recent advances in the field suggest that nerve damage might result from the conversion of nontoxic monomers to toxic oligomers and protofibrils. The mechanisms by which misfolded Abeta peptide and alpha-synuclein might lead to synapse loss are currently under investigation. Several lines of evidence support the possibility that Abeta peptide and alpha-synuclein might interact to cause mitochondrial and plasma membrane damage upon translocation of protofibrils to the membranes. Accumulation of Abeta and alpha-synuclein oligomers in the mitochondrial membrane might result in the release of cytochrome C with the subsequent activation of the apoptosis cascade. Conversely, the oxidative stress and mitochondrial dysfunction associated with AD and PD may also lead to increased membrane permeability and cytochrome C release, which promotes Abeta and alpha-synuclein oligomerization and neurodegeneration. Together, these studies suggest that the translocation of misfolded proteins to the mitochondrial membrane might play an important role in either triggering or perpetuating neurodegeneration. The insights obtained from the characterization of this process may be applied to the role of mitochondrial dysfunction in other neurodegenerative disorders, including AD. New evidence may also provide a rationale for the mitochondrial membrane as a target for therapy in a variety of neurodegenerative diseases.

Journal ArticleDOI
TL;DR: It is suggested that PHF‐tau is able directly to induce neuronal damage in the AD brain, as the proteasome activity in human brains strongly correlated with the amount of co‐precipitated PHF-tau during immunoprecipitation of proteasomes.
Abstract: Alzheimer's disease (AD) is characterized neuropathologically by intracellular neurofibrillary tangles (NFTs) formed of tau-based paired helical filaments (PHFs) and extracellular β-amyloid plaques. The degree of Alzheimer dementia correlates with the severity of PHFs and NFTs. As an intraneuronal accumulation of oxidatively damaged proteins has been found in the brains of patients with AD, a dysfunction of the proteasomal system, which degrades damaged proteins, has been assumed to cause protein aggregation and therefore neurodegeneration in AD. In this study, we revealed that such proteasome dysfunction in AD brain results from the inhibitory binding of PHF-tau to proteasomes. We analysed the proteasome activity in brains from patients with AD and age-matched controls, and observed a significant decrease to 56% of the control level in the straight gyrus of patients with AD. This loss of activity was not associated with a decrease in the proteasome protein. PHF-tau co-precipitated during proteasome immunoprecipitation and proteasome subunits could be co-isolated during isolation of PHFs from AD brain. Furthermore, the proteasome activity in human brains strongly correlated with the amount of co-precipitated PHF-tau during immunoprecipitation of proteasome. Incubation of isolated proteasomes with PHF-tau isolated from AD brain, and with PHFs after in vitro assembly from human recombinant tau protein, resulted in a distinct inhibition of proteasome activity by PHF-tau. As this inhibition of proteasome activity was sufficient to induce neuronal degeneration and death, we suggest that PHF-tau is able directly to induce neuronal damage in the AD brain.