Topic
Neuroinflammation
About: Neuroinflammation is a research topic. Over the lifetime, 15127 publications have been published within this topic receiving 689422 citations. The topic is also known as: neuroinflammation.
Papers published on a yearly basis
Papers
More filters
TL;DR: Specific interactions between the brain endothelium, astrocytes and neurons that may regulate blood–brain barrier function are explored to lead to the development of new protective and restorative therapies.
Abstract: The blood-brain barrier, which is formed by the endothelial cells that line cerebral microvessels, has an important role in maintaining a precisely regulated microenvironment for reliable neuronal signalling. At present, there is great interest in the association of brain microvessels, astrocytes and neurons to form functional 'neurovascular units', and recent studies have highlighted the importance of brain endothelial cells in this modular organization. Here, we explore specific interactions between the brain endothelium, astrocytes and neurons that may regulate blood-brain barrier function. An understanding of how these interactions are disturbed in pathological conditions could lead to the development of new protective and restorative therapies.
4,578 citations
TL;DR: An understanding of intercellular signalling pathways for microglia proliferation and activation could form a rational basis for targeted intervention on glial reactions to injuries in the CNS.
Abstract: The most characteristic feature of microglial cells is their rapid activation in response to even minor pathological changes in the CNS. Microglia activation is a key factor in the defence of the neural parenchyma against infectious diseases, inflammation, trauma, ischaemia, brain tumours and neurodegeneration. Microglia activation occurs as a graded response in vivo. The transformation of microglia into potentially cytotoxic cells is under strict control and occurs mainly in response to neuronal or terminal degeneration, or both. Activated microglia are mainly scavenger cells but also perform various other functions in tissue repair and neural regeneration. They form a network of immune alert resident macrophages with a capacity for immune surveillance and control. Activated microglia can destroy invading micro-organisms, remove potentially deleterious debris, promote tissue repair by secreting growth factors and thus facilitate the return to tissue homeostasis. An understanding of intercellular signalling pathways for microglia proliferation and activation could form a rational basis for targeted intervention on glial reactions to injuries in the CNS. Trends Neurosci. (1996) 19, 312–318
4,372 citations
TL;DR: By better understanding AD inflammatory and immunoregulatory processes, it should be possible to develop anti-inflammatory approaches that may not cure AD but will likely help slow the progression or delay the onset of this devastating disorder.
Abstract: Inflammation clearly occurs in pathologically vulnerable regions of the Alzheimer's disease (AD) brain, and it does so with the full complexity of local peripheral inflammatory responses. In the periphery, degenerating tissue and the deposition of highly insoluble abnormal materials are classical stimulants of inflammation. Likewise, in the AD brain damaged neurons and neurites and highly insoluble amyloid beta peptide deposits and neurofibrillary tangles provide obvious stimuli for inflammation. Because these stimuli are discrete, microlocalized, and present from early preclinical to terminal stages of AD, local upregulation of complement, cytokines, acute phase reactants, and other inflammatory mediators is also discrete, microlocalized, and chronic. Cumulated over many years, direct and bystander damage from AD inflammatory mechanisms is likely to significantly exacerbate the very pathogenic processes that gave rise to it. Thus, animal models and clinical studies, although still in their infancy, strongly suggest that AD inflammation significantly contributes to AD pathogenesis. By better understanding AD inflammatory and immunoregulatory processes, it should be possible to develop anti-inflammatory approaches that may not cure AD but will likely help slow the progression or delay the onset of this devastating disorder.
4,319 citations
University Hospital Bonn1, University of California, Riverside2, Harvard University3, Case Western Reserve University4, University of Illinois at Chicago5, European Institute6, VA Palo Alto Healthcare System7, Stanford University8, Spanish National Research Council9, Cleveland Clinic Lerner Research Institute10, Hong Kong University of Science and Technology11, University of California, Los Angeles12, University of Southern Denmark13, University of Cambridge14, Ikerbasque15, University of the Basque Country16, University of Manchester17, RIKEN Brain Science Institute18, University of Eastern Finland19, University of Massachusetts Medical School20, University of Bonn21, Center of Advanced European Studies and Research22, University of Southern California23, University of South Florida24, Duke University25, Southampton General Hospital26, Moorgreen Hospital27, University of Southampton28, Louisiana State University29, Imperial College London30, Centre national de la recherche scientifique31, Karolinska Institutet32, Max Planck Society33, University of Tübingen34, University of Groningen35, University of Colorado Denver36, Douglas Mental Health University Institute37
TL;DR: Genome-wide analysis suggests that several genes that increase the risk for sporadic Alzheimer's disease encode factors that regulate glial clearance of misfolded proteins and the inflammatory reaction.
Abstract: Increasing evidence suggests that Alzheimer's disease pathogenesis is not restricted to the neuronal compartment, but includes strong interactions with immunological mechanisms in the brain. Misfolded and aggregated proteins bind to pattern recognition receptors on microglia and astroglia, and trigger an innate immune response characterised by release of inflammatory mediators, which contribute to disease progression and severity. Genome-wide analysis suggests that several genes that increase the risk for sporadic Alzheimer's disease encode factors that regulate glial clearance of misfolded proteins and the inflammatory reaction. External factors, including systemic inflammation and obesity, are likely to interfere with immunological processes of the brain and further promote disease progression. Modulation of risk factors and targeting of these immune mechanisms could lead to future therapeutic or preventive strategies for Alzheimer's disease.
3,947 citations
TL;DR: Current studies indicate that even in the normal brain, microglia have highly motile processes by which they scan their territorial domains, and microglial cells are considered the most susceptible sensors of brain pathology.
Abstract: Microglial cells are the resident macrophages in the central nervous system. These cells of mesodermal/mesenchymal origin migrate into all regions of the central nervous system, disseminate through the brain parenchyma, and acquire a specific ramified morphological phenotype termed "resting microglia." Recent studies indicate that even in the normal brain, microglia have highly motile processes by which they scan their territorial domains. By a large number of signaling pathways they can communicate with macroglial cells and neurons and with cells of the immune system. Likewise, microglial cells express receptors classically described for brain-specific communication such as neurotransmitter receptors and those first discovered as immune cell-specific such as for cytokines. Microglial cells are considered the most susceptible sensors of brain pathology. Upon any detection of signs for brain lesions or nervous system dysfunction, microglial cells undergo a complex, multistage activation process that converts them into the "activated microglial cell." This cell form has the capacity to release a large number of substances that can act detrimental or beneficial for the surrounding cells. Activated microglial cells can migrate to the site of injury, proliferate, and phagocytose cells and cellular compartments.
2,998 citations