Topic
Neurosphere
About: Neurosphere is a(n) research topic. Over the lifetime, 5145 publication(s) have been published within this topic receiving 321088 citation(s).
Papers published on a yearly basis
Papers
More filters
TL;DR: Cells of the adult mouse striatum have the capacity to divide and differentiate into neurons and astrocytes.
Abstract: Neurogenesis in the mammalian central nervous system is believed to end in the period just after birth; in the mouse striatum no new neurons are produced after the first few days after birth. In this study, cells isolated from the striatum of the adult mouse brain were induced to proliferate in vitro by epidermal growth factor. The proliferating cells initially expressed nestin, an intermediate filament found in neuroepithelial stem cells, and subsequently developed the morphology and antigenic properties of neurons and astrocytes. Newly generated cells with neuronal morphology were immunoreactive for gamma-aminobutyric acid and substance P, two neurotransmitters of the adult striatum in vivo. Thus, cells of the adult mouse striatum have the capacity to divide and differentiate into neurons and astrocytes.
5,330 citations
TL;DR: Before the full potential of neural stem cells can be realized, the authors need to learn what controls their proliferation, as well as the various pathways of differentiation available to their daughter cells.
Abstract: Neural stem cells exist not only in the developing mammalian nervous system but also in the adult nervous system of all mammalian organisms, including humans. Neural stem cells can also be derived from more primitive embryonic stem cells. The location of the adult stem cells and the brain regions to which their progeny migrate in order to differentiate remain unresolved, although the number of viable locations is limited in the adult. The mechanisms that regulate endogenous stem cells are poorly understood. Potential uses of stem cells in repair include transplantation to repair missing cells and the activation of endogenous cells to provide "self-repair. " Before the full potential of neural stem cells can be realized, we need to learn what controls their proliferation, as well as the various pathways of differentiation available to their daughter cells.
4,486 citations
TL;DR: It is shown that SVZ astrocytes act as neural stem cells in both the normal and regenerating brain and give rise to cells that grow into multipotent neurospheres in vitro.
Abstract: Neural stem cells reside in the subventricular zone (SVZ) of the adult mammalian brain. This germinal region, which continually generates new neurons destined for the olfactory bulb, is composed of four cell types: migrating neuroblasts, immature precursors, astrocytes, and ependymal cells. Here we show that SVZ astrocytes, and not ependymal cells, remain labeled with proliferation markers after long survivals in adult mice. After elimination of immature precursors and neuroblasts by an antimitotic treatment, SVZ astrocytes divide to generate immature precursors and neuroblasts. Furthermore, in untreated mice, SVZ astrocytes specifically infected with a retrovirus give rise to new neurons in the olfactory bulb. Finally, we show that SVZ astrocytes give rise to cells that grow into multipotent neurospheres in vitro. We conclude that SVZ astrocytes act as neural stem cells in both the normal and regenerating brain.
3,755 citations
TL;DR: The predicted amino acid sequence of the nestin gene product shows that nestin defines a distinct sixth class of intermediate filament protein, extending a model in which transitions in intermediate filament gene expression reflect major steps in the pathway of neural differentiation.
Abstract: Multipotential CNS stem cells receive and implement instructions governing differentiation to diverse neuronal and glial fates. Exploration of the mechanisms generating the many cell types of the brain depends crucially on markers identifying the stem cell state. We describe a gene whose expression distinguishes the stem cells from the more differentiated cells in the neural tube. This gene was named nestin because it is specifically expressed in neuroepithelial stem cells. The predicted amino acid sequence of the nestin gene product shows that nestin defines a distinct sixth class of intermediate filament protein. These observations extend a model in which transitions in intermediate filament gene expression reflect major steps in the pathway of neural differentiation.
3,169 citations
TL;DR: It is reported that, unlike other brain cancers, the lethal glioblastoma multiforme contains neural precursors endowed with all of the critical features expected from neural stem cells.
Abstract: Transformed stem cells have been isolated from some human cancers. We report that, unlike other brain cancers, the lethal glioblastoma multiforme contains neural precursors endowed with all of the critical features expected from neural stem cells. Similar, yet not identical, to their normal neural stem cell counterpart, these precursors emerge as unipotent (astroglial) in vivo and multipotent (neuronal-astroglial-oligodendroglial) in culture. More importantly, these cells can act as tumor-founding cells down to the clonal level and can establish tumors that closely resemble the main histologic, cytologic, and architectural features of the human disease, even when challenged through serial transplantation. Thus, cells possessing all of the characteristics expected from tumor neural stem cells seem to be involved in the growth and recurrence of adult human glioblastomas multiforme.
2,345 citations