scispace - formally typeset
Search or ask a question

Showing papers on "Neurosphere published in 2005"


Journal ArticleDOI
TL;DR: In this paper, the authors discuss how these features change during development from neuroepithelial to radial glial cells, and how this transition affects cell fate and neurogenesis.
Abstract: During the development of the mammalian central nervous system, neural stem cells and their derivative progenitor cells generate neurons by asymmetric and symmetric divisions. The proliferation versus differentiation of these cells and the type of division are closely linked to their epithelial characteristics, notably, their apical-basal polarity and cell-cycle length. Here, we discuss how these features change during development from neuroepithelial to radial glial cells, and how this transition affects cell fate and neurogenesis.

1,743 citations


Journal ArticleDOI
TL;DR: It is proposed that melanomas can contain a subpopulation of stem cells that contribute to heterogeneity and tumorigenesis, and targeting this population may lead to effective treatments for melanomas.
Abstract: Recent studies suggest that cancer can arise from a cancer stem cell (CSC), a tumor-initiating cell that has properties similar to those of stem cells. CSCs have been identified in several malignancies, including those of blood, brain, and breast. Here, we test whether stem cell-like populations exist in human melanomas. In approximately 20% of the metastatic melanomas cultured in growth medium suitable for human embryonic stem cells, we found a subpopulation of cells propagating as nonadherent spheres, whereas in standard medium, adherent monolayer cultures were established. Individual cells from melanoma spheres (melanoma spheroid cells) could differentiate under appropriate conditions into multiple cell lineages, such as melanocytic, adipocytic, osteocytic, and chondrocytic lineages, which recapitulates the plasticity of neural crest stem cells. Multipotent melanoma spheroid cells persisted after serial cloning in vitro and transplantation in vivo, indicating their ability to self-renew. Furthermore, they were more tumorigenic than adherent cells when grafted to mice. We identified similar multipotent spheroid cells in melanoma cell lines and found that the stem cell population was enriched in a CD20+ fraction of melanoma cells. Based on these findings, we propose that melanomas can contain a subpopulation of stem cells that contribute to heterogeneity and tumorigenesis. Targeting this population may lead to effective treatments for melanomas.

1,270 citations


Journal ArticleDOI
TL;DR: It is demonstrated that the complex neurosphere environment is dispensable for stem cell maintenance, and that the combination of fibroblast growth factor 2 (FGF-2) and epidermal growth factor (EGF) is sufficient for derivation and continuous expansion by symmetrical division of pure cultures of neural stem (NS) cells.
Abstract: Pluripotent mouse embryonic stem (ES) cells multiply in simple monoculture by symmetrical divisions In vivo, however, stem cells are generally thought to depend on specialised cellular microenvironments and to undergo predominantly asymmetric divisions Ex vivo expansion of pure populations of tissue stem cells has proven elusive Neural progenitor cells are propagated in combination with differentiating progeny in floating clusters called neurospheres The proportion of stem cells in neurospheres is low, however, and they cannot be directly observed or interrogated Here we demonstrate that the complex neurosphere environment is dispensable for stem cell maintenance, and that the combination of fibroblast growth factor 2 (FGF-2) and epidermal growth factor (EGF) is sufficient for derivation and continuous expansion by symmetrical division of pure cultures of neural stem (NS) cells NS cells were derived first from mouse ES cells Neural lineage induction was followed by growth factor addition in basal culture media In the presence of only EGF and FGF-2, resulting NS cells proliferate continuously, are diploid, and clonogenic After prolonged expansion, they remain able to differentiate efficiently into neurons and astrocytes in vitro and upon transplantation into the adult brain Colonies generated from single NS cells all produce neurons upon growth factor withdrawal NS cells uniformly express morphological, cell biological, and molecular features of radial glia, developmental precursors of neurons and glia Consistent with this profile, adherent NS cell lines can readily be established from foetal mouse brain Similar NS cells can be generated from human ES cells and human foetal brain The extrinsic factors EGF plus FGF-2 are sufficient to sustain pure symmetrical self-renewing divisions of NS cells The resultant cultures constitute the first known example of tissue-specific stem cells that can be propagated without accompanying differentiation These homogenous cultures will enable delineation of molecular mechanisms that define a tissue-specific stem cell and allow direct comparison with pluripotent ES cells

903 citations


Journal ArticleDOI
14 Jul 2005-Nature
TL;DR: The results indicate that undifferentiated adult NPCs have relevant therapeutic potential in chronic inflammatory CNS disorders because they display immune-like functions that promote long-lasting neuroprotection.
Abstract: In degenerative disorders of the central nervous system (CNS), transplantation of neural multipotent (stem) precursor cells (NPCs) is aimed at replacing damaged neural cells. Here we show that in CNS inflammation, NPCs are able to promote neuroprotection by maintaining undifferentiated features and exerting unexpected immune-like functions. In a mouse model of chronic CNS inflammation, systemically injected adult syngeneic NPCs use constitutively activated integrins and functional chemokine receptors to selectively enter the inflamed CNS. These undifferentiated cells survive repeated episodes of CNS inflammation by accumulating within perivascular areas where reactive astrocytes, inflamed endothelial cells and encephalitogenic T cells produce neurogenic and gliogenic regulators. In perivascular CNS areas, surviving adult NPCs induce apoptosis of blood-borne CNS-infiltrating encephalitogenic T cells, thus protecting against chronic neural tissue loss as well as disease-related disability. These results indicate that undifferentiated adult NPCs have relevant therapeutic potential in chronic inflammatory CNS disorders because they display immune-like functions that promote long-lasting neuroprotection.

767 citations


Journal ArticleDOI
TL;DR: It is reported that prospectively isolated, human CNS stem cells grown as neurospheres (hCNS-SCns) survive, migrate, and express differentiation markers for neurons and oligodendrocytes after long-term engraftment in spinal cord-injured NOD-scid mice.
Abstract: We report that prospectively isolated, human CNS stem cells grown as neurospheres (hCNS-SCns) survive, migrate, and express differentiation markers for neurons and oligodendrocytes after long-term engraftment in spinal cord-injured NOD-scid mice. hCNS-SCns engraftment was associated with locomotor recovery, an observation that was abolished by selective ablation of engrafted cells by diphtheria toxin. Remyelination by hCNS-SCns was found in both the spinal cord injury NOD-scid model and myelin-deficient shiverer mice. Moreover, electron microscopic evidence consistent with synapse formation between hCNS-SCns and mouse host neurons was observed. Glial fibrillary acidic protein-positive astrocytic differentiation was rare, and hCNS-SCns did not appear to contribute to the scar. These data suggest that hCNS-SCns may possess therapeutic potential for CNS injury and disease.

718 citations


Journal ArticleDOI
06 Oct 2005-Nature
TL;DR: An in vivo genetic fate-mapping strategy is adopted, using Gli1 (GLI-Kruppel family member) as a sensitive readout of Shh activity, to systematically mark and follow the fate of ShH-responding cells in the adult mouse forebrain.
Abstract: Sonic hedgehog (Shh) has been implicated in the ongoing neurogenesis in postnatal rodent brains. Here we adopted an in vivo genetic fate-mapping strategy, using Gli1 (GLI-Kruppel family member) as a sensitive readout of Shh activity, to systematically mark and follow the fate of Shh-responding cells in the adult mouse forebrain. We show that initially, only a small population of cells (including both quiescent neural stem cells and transit-amplifying cells) responds to Shh in regions undergoing neurogenesis. This population subsequently expands markedly to continuously provide new neurons in the forebrain. Our study of the behaviour of quiescent neural stem cells provides in vivo evidence that they can self-renew for over a year and generate multiple cell types. Furthermore, we show that the neural stem cell niches in the subventricular zone and dentate gyrus are established sequentially and not until late embryonic stages.

701 citations


Journal ArticleDOI
TL;DR: Several shortcomings of the neurosphere assay related to its application and interpretation are highlighted that are believed to have led to a significant body of research whose conclusions may well be misleading.
Abstract: For most of the past century, the prospect of replacing lost or damaged cells in the central nervous system (CNS) was hampered by the opinion that the adult mammalian CNS was incapable of generating new nerve cells. This belief, like most dogmas, was essentially founded on a lack of experimental evidence to the contrary. The overturning of this 'no new neuron' hypothesis began midway through the twentieth century with a series of reports documenting neurogenesis in the postnatal and adult brain, continued with the isolation and in vitro culture of neurogenic cells from the adult mammalian brain, and culminated in the discovery of a population of multipotent, self-renewing cells in the adult CNS (that is, bona fide neural stem cells). Although a variety of techniques were initially used, the neurosphere assay (NSA) rapidly emerged as the assay of choice and has since become a valuable tool for isolating, and understanding the biology of, embryonic and adult CNS stem cells. Like all technologies, it is not without its limitations. In this article we will highlight several shortcomings of the assay related to its application and interpretation that we believe have led to a significant body of research whose conclusions may well be misleading.

672 citations


Journal ArticleDOI
TL;DR: It is shown that the murine postnatal cerebellum contains multipotent neural stem cells (NSCs), which can be prospectively isolated based on their expression of the NSC marker prominin-1 (CD133) and their lack of markers of neuronal and glial lineages (lin−).
Abstract: The cerebellum is critical for motor coordination and cognitive function and is the target of transformation in medulloblastoma, the most common malignant brain tumor in children. Although the development of granule cells, the most abundant neurons in the cerebellum, has been studied in detail, the origins of other cerebellar neurons and glia remain poorly understood. Here we show that the murine postnatal cerebellum contains multipotent neural stem cells (NSCs). These cells can be prospectively isolated based on their expression of the NSC marker prominin-1 (CD133) and their lack of markers of neuronal and glial lineages (lin 2 ). Purified prominin 1 lin 2 cells form self-renewing neurospheres and can differentiate into astrocytes, oligodendrocytes and neurons in vitro. Moreover, they can generate each of these lineages after transplantation into the cerebellum. Identification of cerebellar stem cells has important implications for the understanding of cerebellar development and the origins of medulloblastoma.

485 citations


Journal ArticleDOI
TL;DR: The activator-type and repressor-type bHLH genes regulate each other, allowing only subsets of cells to undergo differentiation while keeping others to stay neural stem cells.

484 citations


Journal ArticleDOI
TL;DR: It is demonstrated that FGF20, preferentially expressed in the substantia nigra, acts synergistically with FGF2 to increase the number of DA neurons in ES cell-derived neurospheres, and that the transplanted cells functioned as DA neurons and attenuated MPTP-induced neurological symptoms.
Abstract: Parkinson disease (PD) is a neurodegenerative disorder characterized by loss of midbrain dopaminergic (DA) neurons. ES cells are currently the most promising donor cell source for cell-replacement therapy in PD. We previously described a strong neuralizing activity present on the surface of stromal cells, named stromal cell-derived inducing activity (SDIA). In this study, we generated neurospheres composed of neural progenitors from monkey ES cells, which are capable of producing large numbers of DA neurons. We demonstrated that FGF20, preferentially expressed in the substantia nigra, acts synergistically with FGF2 to increase the number of DA neurons in ES cell-derived neurospheres. We also analyzed the effect of transplantation of DA neurons generated from monkey ES cells into 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated (MPTP-treated) monkeys, a primate model for PD. Behavioral studies and functional imaging revealed that the transplanted cells functioned as DA neurons and attenuated MPTP-induced neurological symptoms.

478 citations


Journal ArticleDOI
TL;DR: It is shown that the prototypical tumor suppressor p53, which plays an important role in brain tumor initiation and growth, is expressed in the neural stem cell lineage in the adult brain, and implicate p53 as a suppressor of tissue and cancer stem cell self-renewal.
Abstract: There is increasing evidence that tumors are heterogeneous and that a subset of cells act as cancer stem cells. Several proto-oncogenes and tumor suppressors control key aspects of stem cell function, suggesting that similar mechanisms control normal and cancer stem cell properties. We show here that the prototypical tumor suppressor p53, which plays an important role in brain tumor initiation and growth, is expressed in the neural stem cell lineage in the adult brain. p53 negatively regulates proliferation and survival, and thereby self-renewal, of neural stem cells. Analysis of the neural stem cell transcriptome identified the dysregulation of several cell cycle regulators in the absence of p53, most notably a pronounced downregulation of p21 expression. These data implicate p53 as a suppressor of tissue and cancer stem cell self-renewal.

Journal ArticleDOI
TL;DR: It is demonstrated that ND-GFP stem cells isolated from the hair-follicle bulge area that are negative for the keratinocyte marker keratin 15 can differentiate into neurons, glia, keratinocytes, smooth muscle cells, and melanocytes in vitro.
Abstract: We have recently shown that the expression of nestin, the neural stem cell marker protein, is expressed in bulge-area stem cells of the hair follicle. We used transgenic mice with GFP expression driven by the nestin regulatory element [nestin-driven GFP (ND-GFP)]. The ND-GFP stem cells give rise to the outer-root sheath of the hair follicle as well as an ND-GFP interfollicular vascular network. In this study, we demonstrate that ND-GFP stem cells isolated from the hair-follicle bulge area that are negative for the keratinocyte marker keratin 15 can differentiate into neurons, glia, keratinocytes, smooth muscle cells, and melanocytes in vitro. These pluripotent ND-GFP stem cells are positive for the stem cell marker CD34, as well as keratin 15-negative, suggesting their relatively undifferentiated state. The apparent primitive state of the ND-GFP stem cells is compatible with their pluripotency. Furthermore, we show that cells derived from ND-GFP stem cells can differentiate into neurons after transplantation to the subcutis of nude mice. These results suggest that hair-follicle bulge-area ND-GFP stem cells may provide an accessible, autologous source of undifferentiated multipotent stem cells for therapeutic application.

Journal ArticleDOI
TL;DR: The results provide a paradigm to explain recent observations in which MSCs or related stem/progenitor cells were found to produce improvements in disease models even though a limited number of the cells engrafted.
Abstract: Stem/progenitor cells from bone marrow and other sources have been shown to repair injured tissues by differentiating into tissue-specific phenotypes, by secreting chemokines, and, in part, by cell fusion. Here we prepared the stem/progenitor cells from human bone marrow (MSCs) and implanted athem into the dentate gyrus of the hippocampus of immunodeficient mice. The implanted human MSCs markedly increased the proliferation of endogenous neural stem cells that expressed the stem cell marker Sox2. Labeling of the mice with BrdUrd demonstrated that, 7 days after implantation of the human MSCs, BrdUrd-labeled endogenous cells migrated throughout the dorsal hippocampus (positive for doublecortin) and expressed markers for astrocytes and for neural or oligodendrocyte progenitors. Subpopulations of BrdUrd-labeled cells exhibited short cytoplasmic processes immunoreactive for nerve growth factor and VEGF. By 30 days after implantation, the newly generated cells expressed markers for more mature neurons and astrocytes. Also, subpopulations of BrdUrd-labeled cells exhibited elaborate processes immunoreactive for ciliary neurotrophic factor, neurotrophin-4/5, nerve growth factor, or VEGF. Therefore, implantation of human MSCs stimulated proliferation, migration, and differentiation of the endogenous neural stem cells that survived as differentiated neural cells. The results provide a paradigm to explain recent observations in which MSCs or related stem/progenitor cells were found to produce improvements in disease models even though a limited number of the cells engrafted.

Journal ArticleDOI
TL;DR: The results suggest that hair follicle stem cells provide an important, accessible, autologous source of adult stem cells for regenerative medicine.
Abstract: The hair follicle bulge area is an abundant, easily accessible source of actively growing, pluripotent adult stem cells. Nestin, a protein marker for neural stem cells, also is expressed in follicle stem cells and their immediate, differentiated progeny. The fluorescent protein GFP, whose expression is driven by the nestin regulatory element in transgenic mice, served to mark the follicle cell fate. The pluripotent nestin-driven GFP stem cells are positive for the stem cell marker CD34 but negative for keratinocyte marker keratin 15, suggesting their relatively undifferentiated state. These cells can differentiate into neurons, glia, keratinocytes, smooth muscle cells, and melanocytes in vitro. In vivo studies show the nestin-driven GFP hair follicle stem cells can differentiate into blood vessels and neural tissue after transplantation to the subcutis of nude mice. Equivalent hair follicle stem cells derived from transgenic mice with β-actin-driven GFP implanted into the gap region of a severed sciatic nerve greatly enhance the rate of nerve regeneration and the restoration of nerve function. The follicle cells transdifferentiate largely into Schwann cells, which are known to support neuron regrowth. Function of the rejoined sciatic nerve was measured by contraction of the gastrocnemius muscle upon electrical stimulation. After severing the tibial nerve and subsequent transplantation of hair follicle stem cells, walking print length and intermediate toe spread significantly recovered, indicating that the transplanted mice recovered the ability to walk normally. These results suggest that hair follicle stem cells provide an important, accessible, autologous source of adult stem cells for regenerative medicine.

Journal ArticleDOI
TL;DR: The results suggest that cardiac neural crest-derived cells migrate into the heart, remain there as dormant multipotent stem cells—and under the right conditions—differentiate into cardiomyocytes and typical Neural crest- derived cells, including neurons, glia, and smooth muscle.
Abstract: Arodent cardiac side population cell fraction formed clonal spheroids in serum-free medium, which expressed nestin, Musashi-1, and multi-drug resistance transporter gene 1, markers of undifferentiated neural precursor cells. These markers were lost following differentiation, and were replaced by the expression of neuron-, glial-, smooth muscle cell–, or cardiomyocyte-specific proteins. Cardiosphere-derived cells transplanted into chick embryos migrated to the truncus arteriosus and cardiac outflow tract and contributed to dorsal root ganglia, spinal nerves, and aortic smooth muscle cells. Lineage studies using double transgenic mice encoding protein 0–Cre/Floxed-EGFP revealed undifferentiated and differentiated neural crest-derived cells in the fetal myocardium. Undifferentiated cells expressed GATA-binding protein 4 and nestin, but not actinin, whereas the differentiated cells were identified as cardiomyocytes. These results suggest that cardiac neural crest-derived cells migrate into the heart, remain there as dormant multipotent stem cells—and under the right conditions—differentiate into cardiomyocytes and typical neural crest-derived cells, including neurons, glia, and smooth muscle.

Journal ArticleDOI
TL;DR: It is demonstrated that progenitor cells express a functional endocannabinoid system that actively regulates cell proliferation both in vitro and in vivo, and thus open novel therapeutic avenues for manipulation of NP cell fate in the adult brain.
Abstract: The discovery of multipotent neural progenitor (NP) cells has provided strong support for the existence of neurogenesis in the adult brain. However, the signals controlling NP proliferation remain elusive. Endocannabinoids, the endogenous counterparts of marijuana-derived cannabinoids, act as neuromodulators via presynaptic CB1 receptors and also control neural cell death and survival. Here we show that progenitor cells express a functional endocannabinoid system that actively regulates cell proliferation both in vitro and in vivo. Specifically, NPs produce endocannabinoids and express the CB1 receptor and the endocannabinoid-inactivating enzyme fatty acid amide hydrolase (FAAH). CB1 receptor activation promotes cell proliferation and neurosphere generation, an action that is abrogated in CB1-deficient NPs. Accordingly, proliferation of hippocampal NPs is increased in FAAH-deficient mice. Our results demonstrate that endocannabinoids constitute a new group of signaling cues that regulate NP proliferation and thus open novel therapeutic avenues for manipulation of NP cell fate in the adult brain.

Journal ArticleDOI
TL;DR: It is shown that cells from human olfactory mucosa generate neurospheres that are multipotent in vitro and when transplanted into the chicken embryo, demonstrating the existence of a multipotent stem‐like cell in the olfatory mucosa useful for autologous transplantation therapies and for cellular studies of disease.
Abstract: Multipotent stem cells are thought to be responsible for the generation of new neurons in the adult brain. Neurogenesis also occurs in an accessible part of the nervous system, the olfactory mucosa. We show here that cells from human olfactory mucosa generate neurospheres that are multipotent in vitro and when transplanted into the chicken embryo. Cloned neurosphere cells show this multipotency. Multipotency was evident without prior culture in vitro: cells dissociated from adult rat olfactory mucosa generate leukocytes when transplanted into bone marrow-irradiated hosts, and cells dissociated from adult mouse olfactory epithelium generated numerous cell types when transplanted into the chicken embryo. It is unlikely that these results can be attributed to hematopoietic precursor contamination or cell fusion. These results demonstrate the existence of a multipotent stem-like cell in the olfactory mucosa useful for autologous transplantation therapies and for cellular studies of disease.

Journal ArticleDOI
TL;DR: The results suggest that the stem cell ultimately responsible for adult hippocampal neurogenesis resides outside the hippocampus, producing progenitor cells that migrate into the neurogenic zones and proliferate to produce new neurons and glia.
Abstract: The aim of this investigation was to characterize the proliferative precursor cells in the adult mouse hippocampal region. Given that a very large number of new hippocampal cells are generated over the lifetime of an animal, it is predicted that a neural stem cell is ultimately responsible for maintaining this genesis. Although it is generally accepted that a proliferative precursor resides within the hippocampus, contradictory reports exist regarding the classification of this cell. Is it a true stem cell or a more limited progenitor? Using a strict functional definition of a neural stem cell and a number of in vitro assays, we report that the resident hippocampal precursor is a progenitor capable of proliferation and multipotential differentiation but is unable to self-renew and thus proliferate indefinitely. Furthermore, the mitogen FGF-2 stimulates proliferation of these cells to a greater extent than epidermal growth factor (EGF). In addition, we found that BDNF was essential for the production of neurons from the hippocampal progenitor cells, being required during proliferation to trigger neuronal fate. In contrast, a bona fide neural stem cell was identified in the lateral wall of the lateral ventricle surrounding the hippocampus. Interestingly, EGF proved to be the stronger mitogenic factor for this cell, which was clearly a different precursor from the resident hippocampal progenitor. These results suggest that the stem cell ultimately responsible for adult hippocampal neurogenesis resides outside the hippocampus, producing progenitor cells that migrate into the neurogenic zones and proliferate to produce new neurons and glia.

Journal ArticleDOI
01 Jun 2005-Stroke
TL;DR: Enriched environment increased the neural stem/progenitor cell pool and neurogenesis in the adult subventricular zone 5 weeks after a cortical stroke, of potential importance for tissue regeneration.
Abstract: Background and Purpose— The subventricular zone in the adult brain is identified as an endogenous resource of neuronal precursors that can be recruited to adjacent lesioned areas. The hypothesis wa...

Journal ArticleDOI
TL;DR: A new genetic model addresses the role of SOX2 in the adult brain and provides evidence that it is involved in the maintenance of neurons in specific regions, in the proliferation and/or maintenance of neural stem cells, and in neurogenesis.

Journal ArticleDOI
TL;DR: It is shown that adult tissues contain stem/ progenitor cells capable of not only generating mature cells of their tissue of origin but also transdifferentiating themselves into other tissue cells.
Abstract: Recent studies have shown that adult tissues contain stem/ progenitor cells capable of not only generating mature cells of their tissue of origin but also transdifferentiating themselves into other tissue cells. Murine skin-derived precursor cells, for example, have been described as unique, nonmesenchymal-like stem cells capable of mesodermal and ectodermal neurogenic differentiation. Human-derived skin precursors are less well characterized. In this study, the isolation and characterization of adherent, mesenchymal stem cell–like cells from human scalp tissue (hSCPs) are described. hSCPs initially isolated by both medium-selection (ms-hSCPs) and single-cell (c-hSCPs) methods were cultured in medium containing epidermal growth factor and fibroblast growth factor-β. Cultured ms-hSCPs and c-hSCPs demonstrated a consistent growth rate, continuously replicated in cell culture, and displayed a stable phenotype indistinguishable from each other. Both hSCPs expressed surface antigen profile (CDw90, SH2, SH4, CD105, CD166, CD44, CD49d-e, and HLA class I) similar to that of bone marrow mesenchymal stem cells (BM-MSCs). The growth kinetics, surface epitopes, and differentiation potential of c-hSCP cells were characterized and compared with BM-MSCs. In addition to differentiation along the osteogenic, chondrogenic, and adipogenic lineages, hSCPs can effectively differentiate into neuronal precursors evident by neurogenic gene expression of glial fibrillary acid protein, NCAM, neuron filament-M, and microtubule-associated protein 2 transcripts. Therefore, hSCPs may potentially be a better alternative of BM-MSCs for neural repairing, in addition to their other mesenchymal regenerative capacity. Our study suggests that hSCPs may provide an alternative adult stem cell resource that may be useful for regenerative tissue repair and autotransplantations.

Journal ArticleDOI
01 May 2005-Glia
TL;DR: The present study shows that signaling of CXCR4 receptor by the chemokine CXCL12 regulates survival and migration of neural precursors as well as oligodendrocyte progenitors (OP) during embryonic and postnatal CNS development.
Abstract: Oligodendrocyte development is controlled by a number of survival and migratory factors. The present study shows that signaling of CXCR4 receptor by the chemokine CXCL12 regulates survival and migration of neural precursors (NP) as well as oligodendrocyte progenitors (OP). CXCR4 is expressed by E14 striatal NP and OP generated by neurospheres. In CXCR4-defective mice, the number of NP in neurosphere outgrowth was twofold less than in wild-type (WT) mice; NP radial cell migration was also decreased. In contrast, the addition of CXCL12 to WT NP increased radial migration from the sphere in a dose-dependent manner with a maximal response at 200 nM. When oligodendrocytes differentiated in neurosphere outgrowth, CXCR4 was downregulated. OP isolated from newborn brain coexpressed CXCR4 with platelet-derived growth factor receptor-alpha (PDGFR alpha) or chondroitin sulfate proteoglycan; receptor expression also decreased during differentiation in vitro. Neonatal OP showed a peak migratory response to 20 nM of CXCL12 in chemotactic chambers, a migration inhibited by a CXCR4 antagonist and anti-CXCL12 antibody. In the embryonic spinal cord, the number of OP-expressing PDGFR alpha was reduced more than twofold in CXCR4-defective mice compared with WT and the ratio of ventral to dorsal OP was significantly increased. This indicates a defect in OP survival and their dorsal migration from the ventral cord region, probably because CXCR4(-/-) OP are unable to respond to CXCL12 made by vascular endothelia and the pia mater. We propose that CXCR4 signaling regulate survival and outward chemotactic migration of OP during embryonic and postnatal CNS development.

Journal ArticleDOI
01 Nov 2005-Apmis
TL;DR: A critical review of the reports of neural transdifferentiation of mesenchymal stem cells is provided, and a set of criteria to be fulfilled for validation of trans Differentiation is proposed.
Abstract: The classic concept of stem cell differentiation can be illustrated as driving into a series of one-way streets, where a given stem cell through generations of daughter cells becomes correspondingly restricted and committed towards a definitive lineage with fully differentiated cells as end points. According to this concept, tissue-derived adult stem cells can only give rise to cells and cell lineages found in the natural, specified tissue of residence. During the last few years it has, however, been reported that under certain experimental conditions adult stem cells may lose their tissue or germ layer-specific phenotypes and become reprogrammed to transdifferentiate into cells of other germ layers and tissues. The transdifferentiation process is referred to as “stem cell plasticity”. Mesenchymal stem cells, present in various tissues, including bone marrow, have – besides differentiation into bone, cartilage, smooth muscle and skeletal muscle – also been reported to transdifferentiate into skin, liver and brain cells (neurons and glia). Conversely, neural stem cells have been reported to give rise to blood cells. The actual occurrence of transdifferentiation is currently much debated, but would have immense clinical potential in cell replacement therapy and regenerative medicine. Controlled neural differentiation of human mesenchymal stem cells might thus become an important source of cells for cell therapy of neurodegenerative diseases, since autologous adult mesenchymal stem cells are more easily harvested and effectively expanded than corresponding neural stem cells. This article provides a critical review of the reports of neural transdifferentiation of mesenchymal stem cells, and proposes a set of criteria to be fulfilled for validation of transdifferentiation.

Journal ArticleDOI
TL;DR: It is shown that caspase‐3 activity is elevated in nonapoptotic differentiating neuronal cell populations and peptide inhibition of protease activity effectively inhibits the differentiation process in a cultured neurosphere model.
Abstract: Caspase proteases have become the focal point for the development and application of anti-apoptotic therapies in a variety of central nervous system diseases. However, this approach is based on the premise that caspase function is limited to invoking cell death signals. Here, we show that caspase-3 activity is elevated in nonapoptotic differentiating neuronal cell populations. Moreover, peptide inhibition of protease activity effectively inhibits the differentiation process in a cultured neurosphere model. These results implicate caspase-3 activation as a conserved feature of neuronal differentiation and suggest that targeted inhibition of this protease in neural cell populations may have unintended consequences.

Journal ArticleDOI
TL;DR: The results suggest that HuD is required at multiple points during neuronal development, including negative regulation of proliferative activity and neuronal cell-fate acquisition of neural stem/progenitor cells.
Abstract: Neural Hu proteins (HuB/C/D) are RNA-binding proteins that have been shown to induce neuronal differentiation activity when overexpressed in immature neural progenitor cells or undifferentiated neuronal tumors. Newly generated HuD-deficient mice exhibited a transient impaired-cranial-nerve-development phenotype at an early embryonic stage. Adult HuD-deficient mice exhibited an abnormal hind-limb reflex and poor rotarod performance. Analysis of neurosphere formation revealed that the number and self-renewal capacity of the neural stem/progenitor cells were increased in HuD-deficient mice. HuD-deficient primary neurospheres also generated a smaller number of neurons. Cohort analysis of the cellular proliferative activity by using BrdUrd and iododeoxuridine labeling revealed that the number of differentiating quiescent cells in the embryonic cerebral wall was decreased. Long-term administration of BrdUrd revealed that the number of slowly dividing stem cells in the adult subventricular zone was increased in the HuD-deficient mice. Taken together, the results suggest that HuD is required at multiple points during neuronal development, including negative regulation of proliferative activity and neuronal cell-fate acquisition of neural stem/progenitor cells.

Book ChapterDOI
TL;DR: One of the key advances in the field of neurobiology is the discovery that astroglial cells can generate neurons not only during development, but also throughout adult life and potentially even after brain lesion.
Abstract: Astroglial cells are the most frequent cell type in the adult mammalian brain, and the number and range of their diverse functions are still increasing. One of their most striking roles is their function as adult neural stem cells and contribution to neurogenesis. This chapter discusses first the role of the ubiquitous glial cell type in the developing nervous system, the radial glial cells. Radial glial cells share several features with neuroepithelial cells, but also with astrocytes in the mature brain, which led to the name "radial glia." At the end of neurogenesis in the mammalian brain, radial glial cells disappear, and a subset of them transforms into astroglial cells. Interestingly, only some astrocytes maintain their neurogenic potential and continue to generate neurons throughout life. We discuss the current knowledge about the differences between the adult astroglial cells that remain neurogenic and act as neural stem cells and the majority of other astroglial cells that have apparently lost the capacity to generate neurons. Additionally, we review the changes in glial cells upon brain lesion, their dedifferentiation and recapitulation of radial glial properties, and the conditions under which reactive glia may reinitiate some neurogenic potential. Given that the astroglial cells are not only the most frequent cell type in an adult mammalian brain, but also the key cell type in the wound reaction of the brain to injury, it is essential to further understand their heterogeneity and molecular specification, with the final aim of using this unique source for neuronal replacement. Therefore, one of the key advances in the field of neurobiology is the discovery that astroglial cells can generate neurons not only during development, but also throughout adult life and potentially even after brain lesion.

Journal ArticleDOI
TL;DR: It is demonstrated that vascular endothelial growth factor (VEGF) is able to induce a long-range attraction of transplanted human NSCs from distant sites in the adult brain and indicates that tumor-upregulated VEGF and angiogenic-activated microvasculature are relevant guidance signals for NSC tropism toward brain tumors.

Journal ArticleDOI
TL;DR: By adding hEGF, bFGF, dbcAMP, IBMX, BDNF, and bF GF-8 into NEUROBASAL media plus B27, BM MSCs were directed toward becoming early and mature NCs.
Abstract: Bone marrow (BM) mesenchymal stem cells (MSCs) are cells capable of expanding and differentiating in vitro into nonhematopoietic cells. Neurotrophic cytokines, such as human epidermal growth factor (hEGF) and bovine fibroblast growth factor (bFGF) can induce differentiation into neural cells (NCs). When BM MSCs were cultured with hEGF and bFGF, RNA expression of neuronal specific markers Nestin, MAP-2, and tyrosine hydroxylase (TH) were observed. We tested a new cytokine combination to generate mature NCs. The plastic-adherent cells were collected and then split when they were 90% confluent from an enriched mononuclear cell layer. At passage 3, MSCs were cultured in neural differentiation media (dbcAMP, IBMX, FGF-8, BDNF, hEGF, and bFGF in NEUROBASAL media plus B27). Cells were counted on day 6. Immunofluorescent staining and reverse transcriptase (RT)-PCR were performed to evaluate the expression of neural markers. On day 6, 66% of cells developed dendrites and presented typical neural cell morphology. Some cells were positive for early neural markers Nestin and beta-tubulin III. Cells expressing mature neuronal markers (NF, NeuN, Tau, Nurr1, GABA, oligodendryte GalC, and glial GFAP) were also seen. By adding hEGF, bFGF, dbcAMP, IBMX, BDNF, and bFGF-8 into NEUROBASAL media plus B27, BM MSCs were directed toward becoming early and mature NCs.

Journal ArticleDOI
TL;DR: Video time-lapse microscopy showed that conversion of mesenchymal stem cells to a neuron-like morphology could be reproduced in normal primary fibroblasts as well as mimicked by addition of drugs eliciting cytoskeletal collapse and disruption of focal adhesion contacts.
Abstract: The possibility of generating neural cells from human bone-marrow-derived mesenchymal stem cells (hMSCs) by simple in vitro treatments is appealing both conceptually and practically. However, whether phenotypic modulations observed after chemical manipulation of such stem cells truly represent a genuine trans-lineage differentiation remains to be established. We have re-evaluated the effects of a frequently reported biochemical approach, based on treatment with butylated hydroxyanisole and dimethylsulphoxide, to bring about such phenotypic conversion by monitoring the morphological changes induced by the treatment in real time, by analysing the expression of phenotype-specific protein markers and by assessing the modulation of transcriptome. Video time-lapse microscopy showed that conversion of mesenchymal stem cells to a neuron-like morphology could be reproduced in normal primary fibroblasts as well as mimicked by addition of drugs eliciting cytoskeletal collapse and disruption of focal adhesion contacts. Analysis of markers revealed that mesenchymal stem cells constitutively expressed multi-lineage traits, including several pertaining to the neural one. However, the applied `neural induction9 protocol neither significantly modulated the expression of such markers, nor induced de novo translation of other neural-specific proteins. Similarly, global expression profiling of over 21,000 genes demonstrated that gene transcription was poorly affected. Most strikingly, we found that the set of genes whose expression was altered by the inductive treatment did not match those sets of genes differentially expressed when comparing untreated mesenchymal stem cells and immature neural tissues. Conversely, by comparing these gene expression profiles with that obtained from comparisons between the same cells and an unrelated non-neural organ, such as liver, we found that the adopted neural induction protocol was no more effective in redirecting human mesenchymal stem cells toward a neural phenotype than toward an endodermal hepatic pathway.

Journal ArticleDOI
TL;DR: It is proposed that the expression of Sox2 is a unifying characteristic of N SCs in the adult brain, but that not all NSCs maintain the ability to form all neural cell types in vivo.
Abstract: The identification of neural stem cells (NSCs) in situ has been prevented by the inability to identify a marker consistently expressed in all adult NSCs and is thus generally accomplished using the in vitro neurosphere-forming assay. The high-mobility group transcription factor Sox2 is expressed in embryonic neural epithelial stem cells; because these cells are thought to give rise to the adult NSC population, we hypothesized that Sox2 may continue to be expressed in adult NSCs. Using Sox2:EGFP transgenic mice, we show that Sox2 is expressed in neurogenic regions along the rostral-caudal axis of the central nervous system throughout life. Furthermore, all neurospheres derived from these neurogenic regions express Sox2, suggesting that Sox2 is indeed expressed in adult NSCs. We demonstrate that NSCs are heterogeneous within the adult brain, with differing capacities for cell production. In vitro, all neurospheres express Sox2, but the expression of markers common to early progenitor cells within individual neurospheres varies; this heterogeneity of NSCs is mirrored in vivo. For example, both glial fibrillary acidic protein and NG2 are expressed within individual neurospheres, but their expression is mutually exclusive; likewise, these two markers show distinct staining patterns within the Sox2+ regions of the brain's neurogenic regions. Thus, we propose that the expression of Sox2 is a unifying characteristic of NSCs in the adult brain, but that not all NSCs maintain the ability to form all neural cell types in vivo.