scispace - formally typeset
Search or ask a question

Showing papers on "Neurosphere published in 2008"


Journal ArticleDOI
TL;DR: Unexpectedly, the distribution of Bmi1-expressing stem cells along the length of the small intestine suggested that mammals use more than one molecularly distinguishable adult stem cell subpopulation to maintain organ homeostasis.
Abstract: Eugenio Sangiorgi and Mario Capecchi use lineage tracing in mice to identify Bmi1 as a specific marker of a stem cell population located at the +4 position of the small intestinal crypt. Their findings address a long-standing debate in the field and support the existence of two distinct intestinal stem cell populations near the crypt base. Bmi1 plays an essential part in the self-renewal of hematopoietic and neural stem cells. To investigate its role in other adult stem cell populations, we generated a mouse expressing a tamoxifen-inducible Cre from the Bmi1 locus. We found that Bmi1 is expressed in discrete cells located near the bottom of crypts in the small intestine, predominantly four cells above the base of the crypt (+4 position). Over time, these cells proliferate, expand, self-renew and give rise to all the differentiated cell lineages of the small intestine epithelium. The induction of a stable form of β-catenin in these cells was sufficient to rapidly generate adenomas. Moreover, ablation of Bmi1+ cells using a Rosa26 conditional allele, expressing diphtheria toxin, led to crypt loss. These experiments identify Bmi1 as an intestinal stem cell marker in vivo. Unexpectedly, the distribution of Bmi1-expressing stem cells along the length of the small intestine suggested that mammals use more than one molecularly distinguishable adult stem cell subpopulation to maintain organ homeostasis.

1,051 citations


Journal ArticleDOI
TL;DR: It is shown by genetic fate mapping and cell type-specific viral targeting that quiescent astrocytes start to proliferate after stab wound injury and contribute to the reactive gliosis and proliferating GFAP+ cells.
Abstract: Reactive gliosis is the universal reaction to brain injury, but the precise origin and subsequent fate of the glial cells reacting to injury are unknown. Astrocytes react to injury by hypertrophy and up-regulation of the glial-fibrillary acidic protein (GFAP). Whereas mature astrocytes do not normally divide, a subpopulation of the reactive GFAP+ cells does so, prompting the question of whether the proliferating GFAP+ cells arise from endogenous glial progenitors or from mature astrocytes that start to proliferate in response to brain injury. Here we show by genetic fate mapping and cell type-specific viral targeting that quiescent astrocytes start to proliferate after stab wound injury and contribute to the reactive gliosis and proliferating GFAP+ cells. These proliferating astrocytes remain within their lineage in vivo, while a more favorable environment in vitro revealed their multipotency and capacity for self-renewal. Conversely, progenitors present in the adult mouse cerebral cortex labeled by NG2 or the receptor for the platelet-derived growth factor (PDGFRα) did not form neurospheres after (or before) brain injury. Taken together, the first fate-mapping analysis of astrocytes in the adult mouse cerebral cortex shows that some astrocytes acquire stem cell properties after injury and hence may provide a promising cell type to initiate repair after brain injury.

725 citations


Journal ArticleDOI
TL;DR: This is the first example of specific regulation by a miR of a neural stem cell self-renewal factor, implicating miRs that may normally regulate brain development as important biological and therapeutic targets against the "stem cell-like" characteristics of glioma.
Abstract: MicroRNAs (miR) show characteristic expression signatures in various cancers and can profoundly affect cancer cell behavior. We carried out miR expression profiling of human glioblastoma specimens versus adjacent brain devoid of tumor. This revealed several significant alterations, including a pronounced reduction of miR-128 in tumor samples. miR-128 expression significantly reduced glioma cell proliferation in vitro and glioma xenograft growth in vivo. miR-128 caused a striking decrease in expression of the Bmi-1 oncogene, by direct regulation of the Bmi-1 mRNA 3'-untranslated region, through a single miR-128 binding site. In a panel of patient glioblastoma specimens, Bmi-1 expression was significantly up-regulated and miR-128 was down-regulated compared with normal brain. Bmi-1 functions in epigenetic silencing of certain genes through epigenetic chromatin modification. We found that miR-128 expression caused a decrease in histone methylation (H3K27me(3)) and Akt phosphorylation, and up-regulation of p21(CIP1) levels, consistent with Bmi-1 down-regulation. Bmi-1 has also been shown to promote stem cell self-renewal; therefore, we investigated the effects of miR-128 overexpression in human glioma neurosphere cultures, possessing features of glioma "stem-like" cells. This showed that miR-128 specifically blocked glioma self-renewal consistent with Bmi-1 down-regulation. This is the first example of specific regulation by a miR of a neural stem cell self-renewal factor, implicating miRs that may normally regulate brain development as important biological and therapeutic targets against the "stem cell-like" characteristics of glioma.

725 citations


Journal ArticleDOI
23 Oct 2008-Nature
TL;DR: In this article, the authors show that concomitant central nervous system (CNS)-specific deletion of p53 and Pten in the mouse CNS generates a penetrant acute-onset high-grade malignant glioma phenotype with notable clinical, pathological and molecular resemblance to primary GBM in humans.
Abstract: Glioblastoma (GBM) is a highly lethal brain tumour presenting as one of two subtypes with distinct clinical histories and molecular profiles. The primary GBM subtype presents acutely as a high-grade disease that typically harbours mutations in EGFR, PTEN and INK4A/ARF (also known as CDKN2A), and the secondary GBM subtype evolves from the slow progression of a low-grade disease that classically possesses PDGF and TP53 events. Here we show that concomitant central nervous system (CNS)-specific deletion of p53 and Pten in the mouse CNS generates a penetrant acute-onset high-grade malignant glioma phenotype with notable clinical, pathological and molecular resemblance to primary GBM in humans. This genetic observation prompted TP53 and PTEN mutational analysis in human primary GBM, demonstrating unexpectedly frequent inactivating mutations of TP53 as well as the expected PTEN mutations. Integrated transcriptomic profiling, in silico promoter analysis and functional studies of murine neural stem cells (NSCs) established that dual, but not singular, inactivation of p53 and Pten promotes an undifferentiated state with high renewal potential and drives increased Myc protein levels and its associated signature. Functional studies validated increased Myc activity as a potent contributor to the impaired differentiation and enhanced renewal of NSCs doubly null for p53 and Pten (p53(-/-) Pten(-/-)) as well as tumour neurospheres (TNSs) derived from this model. Myc also serves to maintain robust tumorigenic potential of p53(-/-) Pten(-/-) TNSs. These murine modelling studies, together with confirmatory transcriptomic/promoter studies in human primary GBM, validate a pathogenetic role of a common tumour suppressor mutation profile in human primary GBM and establish Myc as an important target for cooperative actions of p53 and Pten in the regulation of normal and malignant stem/progenitor cell differentiation, self-renewal and tumorigenic potential.

693 citations


Journal ArticleDOI
TL;DR: Using genetic fate mapping, it is shown that close to all in vitro neural stem cell potential in the adult spinal cord resides within the population of ependymal cells lining the central canal.
Abstract: Spinal cord injury often results in permanent functional impairment. Neural stem cells present in the adult spinal cord can be expanded in vitro and improve recovery when transplanted to the injured spinal cord, demonstrating the presence of cells that can promote regeneration but that normally fail to do so efficiently. Using genetic fate mapping, we show that close to all in vitro neural stem cell potential in the adult spinal cord resides within the population of ependymal cells lining the central canal. These cells are recruited by spinal cord injury and produce not only scar-forming glial cells, but also, to a lesser degree, oligodendrocytes. Modulating the fate of ependymal progeny after spinal cord injury may offer an alternative to cell transplantation for cell replacement therapies in spinal cord injury.

598 citations


Journal ArticleDOI
TL;DR: It is shown that human spinal motor neurons, but not interneurons, are selectively sensitive to the toxic effect of glial cells carrying an ALS-causing mutation in the SOD1 gene, demonstrating the relevance of these non-cell-autonomous effects to human motor neurons.

482 citations


Journal ArticleDOI
01 May 2008-Oncogene
TL;DR: The generation of another distinct cluster of cell lines showing similarly homogeneous profiling but restricted stem cell properties suggests that different phenotypes exist, each of which may lead to the typical appearance of glioblastoma.
Abstract: Tumor cells with stem cell-like properties can be cultured from human glioblastomas by using conditions that select for the expansion of neural stem cells. We generated cell lines from glioblastoma specimens with the goal to obtain model systems for glioma stem cell biology. Unsupervised analysis of the expression profiles of nine cell lines established under neural stem cell conditions yielded two distinct clusters. Four cell lines were characterized by the expression of neurodevelopmental genes. They showed a multipotent differentiation profile along neuronal, astroglial and oligodendroglial lineages, grew spherically in vitro, expressed CD133 and formed highly invasive tumors in vivo. The other five cell lines shared expression signatures enriched for extracellular matrix-related genes, had a more restricted differentiation capacity, contained no or fewer CD133+ cells, grew semiadherent or adherent in vitro and displayed reduced tumorigenicity and invasion in vivo. Our findings show that stable, multipotent glioblastoma cell lines with a full stem-like phenotype express neurodevelopmental genes as a distinctive feature, which may offer therapeutic targeting opportunities. The generation of another distinct cluster of cell lines showing similarly homogeneous profiling but restricted stem cell properties suggests that different phenotypes exist, each of which may lead to the typical appearance of glioblastoma.

415 citations


Journal ArticleDOI
TL;DR: Data show that L1CAM is required for maintaining the growth and survival of CD133(+) glioma cells both in vitro and in vivo, and L 1CAM may represent a cancer stem cell-specific therapeutic target for improving the treatment of malignant gliomas and other brain tumors.
Abstract: Malignant gliomas are lethal cancers that display striking cellular heterogeneity. A highly tumorigenic glioma tumor subpopulation, termed cancer stem cells or tumor-initiating cells, promotes therapeutic resistance and tumor angiogenesis. Therefore, targeting cancer stem cells may improve patient survival. We interrogated the role of a neuronal cell adhesion molecule, L1CAM, in glioma stem cells as L1CAM regulates brain development and is expressed in gliomas. L1CAM(+) and CD133(+) cells cosegregated in gliomas, and levels of L1CAM were higher in CD133(+) glioma cells than normal neural progenitors. Targeting L1CAM using lentiviral-mediated short hairpin RNA (shRNA) interference in CD133(+) glioma cells potently disrupted neurosphere formation, induced apoptosis, and inhibited growth specifically in glioma stem cells. We identified a novel mechanism for L1CAM regulation of cell survival as L1CAM knockdown decreased expression of the basic helix-loop-helix transcription factor Olig2 and up-regulated the p21(WAF1/CIP1) tumor suppressor in CD133(+) glioma cells. To determine if targeting L1CAM was sufficient to reduce glioma stem cell tumor growth in vivo, we targeted L1CAM in glioma cells before injection into immunocompromised mice or directly in established tumors. In each glioma xenograft model, shRNA targeting of L1CAM expression in vivo suppressed tumor growth and increased the survival of tumor-bearing animals. Together, these data show that L1CAM is required for maintaining the growth and survival of CD133(+) glioma cells both in vitro and in vivo, and L1CAM may represent a cancer stem cell-specific therapeutic target for improving the treatment of malignant gliomas and other brain tumors.

396 citations


Journal ArticleDOI
20 Nov 2008-PLOS ONE
TL;DR: These findings support a central role of c-Myc in regulating proliferation and survival of glioma cancer stem cells and targeting core stem cell pathways may offer improved therapeutic approaches for advanced cancers.
Abstract: Background: Malignant gliomas rank among the most lethal cancers. Gliomas display a striking cellular heterogeneity with a hierarchy of differentiation states. Recent studies support the existence of cancer stem cells in gliomas that are functionally defined by their capacity for extensive self-renewal and formation of secondary tumors that phenocopy the original tumors. As the c-Myc oncoprotein has recognized roles in normal stem cell biology, we hypothesized that c-Myc may contribute to cancer stem cell biology as these cells share characteristics with normal stem cells. Methodology/Principal Findings: Based on previous methods that we and others have employed, tumor cell populations were enriched or depleted for cancer stem cells using the stem cell marker CD133 (Prominin-1). We characterized c-Myc expression in matched tumor cell populations using real time PCR, immunoblotting, immunofluorescence and flow cytometry. Here we report that c-Myc is highly expressed in glioma cancer stem cells relative to non-stem glioma cells. To interrogate the significance of c-Myc expression in glioma cancer stem cells, we targeted its expression using lentivirally transduced short hairpin RNA (shRNA). Knockdown of c-Myc in glioma cancer stem cells reduced proliferation with concomitant cell cycle arrest in the G0/G1 phase and increased apoptosis. Non-stem glioma cells displayed limited dependence on c-Myc expression for survival and proliferation. Further, glioma cancer stem cells with decreased c-Myc levels failed to form neurospheres in vitro or tumors when xenotransplanted into the brains of immunocompromised mice. Conclusions/Significance: These findings support a central role of c-Myc in regulating proliferation and survival of glioma cancer stem cells. Targeting core stem cell pathways may offer improved therapeutic approaches for advanced cancers.

376 citations


Journal ArticleDOI
TL;DR: It is demonstrated that, in the adult mouse forebrain, immunoreactivity for a neural stem cell marker, prominin-1/CD133, is exclusively localized to the ependyma, although not all ependymal cells are CD133+.
Abstract: The postnatal forebrain subventricular zone (SVZ) harbors stem cells that give rise to olfactory bulb interneurons throughout life. The identity of stem cells in the adult SVZ has been extensively debated. Although, ependymal cells were once suggested to have stem cell characteristics, subsequent studies have challenged the initial report and postulated that subependymal GFAP+ cells were the stem cells. Here, we report that, in the adult mouse forebrain, immunoreactivity for a neural stem cell marker, prominin-1/CD133, is exclusively localized to the ependyma, although not all ependymal cells are CD133+. Using transplantation and genetic lineage tracing approaches, we demonstrate that CD133+ ependymal cells continuously produce new neurons destined to olfactory bulb. Collectively, our data indicate that, compared with GFAP expressing adult neural stem cells, CD133+ ependymal cells represent an additional—perhaps more quiescent—stem cell population in the mammalian forebrain.

320 citations


Journal ArticleDOI
TL;DR: It is suggested that stem cells of embryonic, neural, and hematopoietic origin are heterogeneous, with cells moving between two or more metastable states.

Journal ArticleDOI
TL;DR: A role for Wnt signaling as an important regulator of stem cell self-renewal in the developing brain is uncovered and the addition of exogenous Wnt3a protein enhances clonal outgrowth, demonstrating not only a critical role for the Wnt pathway for the regulation of neurogenesis but also its use for the expansion of neural stem cells in cell culture and in tissue engineering.
Abstract: In this work we have uncovered a role for Wnt signaling as an important regulator of stem cell self-renewal in the developing brain. We identified Wnt-responsive cells in the subventricular zone of the developing E14.5 mouse brain. Responding cell populations were enriched for self-renewing stem cells in primary culture, suggesting that Wnt signaling is a hallmark of self-renewing activity in vivo. We also tested whether Wnt signals directly influence neural stem cells. Using inhibitors of the Wnt pathway, we found that Wnt signaling is required for the efficient cloning and expansion of single-cell derived populations that are able to generate new stem cells as well as neurons, astrocytes, and oligodendrocytes. The addition of exogenous Wnt3a protein enhances clonal outgrowth, demonstrating not only a critical role for the Wnt pathway for the regulation of neurogenesis but also its use for the expansion of neural stem cells in cell culture and in tissue engineering.

Journal ArticleDOI
TL;DR: Hes genes are mammalian homologues of Drosophila hairy and Enhancer of split, which encode basic helix-loop-helix (bHLH) transcriptional repressors.
Abstract: Hes genes are mammalian homologues of Drosophila hairy and Enhancer of split, which encode basic helix-loop-helix (bHLH) transcriptional repressors. In the developing central nervous system, Hes1, Hes3 and Hes5 are highly expressed by neural stem cells. Inactivation of these Hes genes leads to upregulation of proneural genes, acceleration of neurogenesis and premature depletion of neural stem cells. Conversely, overexpression of Hes genes leads to inhibition of neurogenesis and maintenance of neural stem cells. At later stages of development, Hes genes promote gliogenesis. Furthermore, Hes genes regulate maintenance of boundaries, which partition the nervous system into many compartments and endow the neighboring compartments with regional identities by secreting morphogens. Boundary cells usually proliferate slowly and do not give rise to neurons, unlike neural stem cells in compartments. Interestingly, these different characteristics between boundary cells and compartmental neural stem cells are regulated by different modes of Hes1 expression, which is variable in neural stem cells in compartments and persistent and high in boundary cells. Thus, Hes genes play an essential role in neural development by regulating proliferation, differentiation and specification of neural stem cells.

Journal ArticleDOI
Ling Qiao1, Zhili Xu1, Tiejun Zhao1, Lihong Ye1, Xiaodong Zhang1 
TL;DR: The finding showed that beta-catenin was down-regulated in MCF-7 cells by conditioned media from Z3 hMSCs, and the expression level of dickkopf-1 (Dkk-1) was higher in Z3 cells than that inMCF- 7 cells, suggesting that DKK-1 secreted by Z3 Cells involves the inhibition via the Wnt pathway.

Journal ArticleDOI
TL;DR: In this paper, it was shown that bone morphogenic protein (BMP)-mediated signaling is active in adult neural stem cells and is crucial to initiate the neurogenic lineage in the adult mouse subependymal zone.
Abstract: In the mammalian brain, neurogenesis continues only in few regions of the forebrain. The molecular signals governing neurogenesis in these unique neurogenic niches, however, are still ill defined. Here, we show that bone morphogenic protein (BMP)-mediated signaling is active in adult neural stem cells and is crucial to initiate the neurogenic lineage in the adult mouse subependymal zone. Conditional deletion of Smad4 in adult neural stem cells severely impairs neurogenesis, and this is phenocopied by infusion of Noggin, an extracellular antagonist of BMP. Smad4 deletion in stem, but not progenitor cells, as well as Noggin infusion lead to an increased number of Olig2-expressing progeny that migrate to the corpus callosum and differentiate into oligodendrocytes. Transplantation experiments further verified the cell-autonomous nature of this phenotype. Thus, BMP-mediated signaling via Smad4 is required to initiate neurogenesis from adult neural stem cells and suppress the alternative fate of oligodendrogliogenesis.

Journal ArticleDOI
TL;DR: This study indicated that SIRT1 is a player of repressing Notch1-Hes1 signaling pathway, and its transient translocation into the nucleus may have a role in the differentiation of NPCs.
Abstract: Neural precursor cells (NPCs) differentiate into neurons, astrocytes, and oligodendrocytes in response to intrinsic and extrinsic changes. Notch signals maintain undifferentiated NPCs, but the mechanisms underlying the neuronal differentiation are largely unknown. We show that SIRT1, an NAD+-dependent histone deacetylase, modulates neuronal differentiation. SIRT1 was found in the cytoplasm of embryonic and adult NPCs and was transiently localized in the nucleus in response to differentiation stimulus. SIRT1 started to translocate into the nucleus within 10 min after the transfer of NPCs into differentiation conditions, stayed in the nucleus, and then gradually retranslocated to the cytoplasm after several hours. The number of neurospheres that generated Tuj1+ neurons was significantly decreased by pharmacological inhibitors of SIRT1, dominant-negative SIRT1 and SIRT1-siRNA, whereas overexpression of SIRT1, but not that of cytoplasm-localized mutant SIRT1, enhanced neuronal differentiation and decreased Hes1 expression. Expression of SIRT1-siRNA impaired neuronal differentiation and migration of NPCs into the cortical plate in the embryonic brain. Nuclear receptor corepressor (N-CoR), which has been reported to bind SIRT1, promoted neuronal differentiation and synergistically increased the number of Tuj1+ neurons with SIRT1, and both bound the Hes1 promoter region in differentiating NPCs. Hes1 transactivation by Notch1 was inhibited by SIRT1 and/or N-CoR. Our study indicated that SIRT1 is a player of repressing Notch1-Hes1 signaling pathway, and its transient translocation into the nucleus may have a role in the differentiation of NPCs.

Journal ArticleDOI
TL;DR: The findings of this study indicate that mesenchymal stem cells promote survival and inhibit proliferation and maturation of B cells, and support a role of these cells in the immune response.
Abstract: Background Mesenchymal stem cells are multilineage non-hematopoietic progenitor cells that play a key role in supporting the lymphohematopoietic system. Their distribution in bone marrow and secondary lymphoid organs allows an intimate interaction with T- and B-lymphocytes. While their effect on T-lymphocytes has been extensively analyzed, data on the effect of mesenchymal stem cells on B cells are more limited. We analyzed the effects of mesenchymal stem cells on B-lymphocytes and the pathways involved in these effects.Design and Methods The effect of MSC on the proliferation and viability of B cells was evaluated using MTT assays, annexin/7-amino-actinomycin D and propidium iodide staining. The B-cell maturation pattern was established using flow cytometry based on the expression of different markers related to the differentiation of B cells, such as CD38, CD138, CD19 and CCR7, and to the expression of surface and intracellular immunoglobulins. Finally, western blot assays were used to identify the pathways involved in the effects of mesenchymal stem cells on B-lymphocytes.Results Mesenchymal stem cells increased viability and blocked the cell cycle of B-lymphocytes in the G0/G1 phase. In vitro exposure of B cells to plasmacytoid dendritic cells induced B-cell differentiation as shown by an increased number of CD38++/CD138++ cells, which also displayed higher levels of cytoplasmic immunoglobulin and lower levels of CD19, CCR7 and surface immunoglobulin. Interestingly, this maturation pattern was inhibited by adding mesenchymal stem cells to the culture. Finally, mesenchymal stem cells modified the phosphorylation pattern of the extracellular response kinase 1/2 and p38 pathways which are both involved in B-cell viability, proliferation and activation.Conclusions Mesenchymal stem cells increase B-cell viability while inhibiting proliferation, arresting B-lymphocytes in the G0/G1 phase of the cell cycle. The presence of mesenchymal stem cells blocked B-cell differentiation as assessed by flow cytometry. Finally, mesenchymal stem cells modified the activation pattern of the extracellular response kinase and the p38 mitogen-activated protein kinase pathways in B-lymphocytes.

Journal ArticleDOI
TL;DR: Transfection of SMAD in GBM cells inhibited their growth, suggesting that SMAD may drive GBM stem cells to differentiate to CD133- cells through up-regulation of miR-451 and reduces their tumorigenicity.

Journal ArticleDOI
TL;DR: This work describes the generation and long-term expansion of multiple human foetal neural stem (NS) cell lines in monolayer culture without genetic immortalization, and demonstrates that human NS cells are tripotent.

Journal ArticleDOI
TL;DR: It is demonstrated that populations enriched for cancer stem cells are preferentially sensitive to an inhibitor of Akt, a prominent cell survival and invasion signaling node, and suggest that Akt inhibitors may function as effective anticancer stem cell therapies.
Abstract: Malignant brain tumors are among the most lethal cancers, and conventional therapies are largely limited to palliation. Novel therapies targeted against specific molecular pathways may offer superior efficacy and less toxicity than conventional therapies, but initial clinical trials of molecular targeted agents in brain cancer therapy have been frequently disappointing. In brain tumors and other cancers, subpopulations of tumor cells have recently been characterized by their ability to self-renew and initiate tumors. Although these cancer stem cells, or tumor initiating cells, are often only present in small numbers in human tumors, mounting evidence suggests that cancer stem cells contribute to tumor maintenance and therapeutic resistance. Thus, the development of therapies that target cancer stem cell signal transduction and biology may improve brain tumor patient survival. We now demonstrate that populations enriched for cancer stem cells are preferentially sensitive to an inhibitor of Akt, a prominent cell survival and invasion signaling node. Treatment with an Akt inhibitor more potently reduced the numbers of viable brain cancer stem cells relative to matched nonstem cancer cells associated with a preferential induction of apoptosis and a suppression of neurosphere formation. Akt inhibition also reduced the motility and invasiveness of all tumor cells but had a greater impact on cancer stem cell behaviors. Furthermore, inhibition of Akt activity in cancer stem cells increased the survival of immunocompromised mice bearing human glioma xenografts in vivo. Together, these results suggest that Akt inhibitors may function as effective anticancer stem cell therapies.

Journal ArticleDOI
TL;DR: Evidence is provided for a whole cell property that reflects stem cell fate bias and DEP is established as a tool with unique capabilities for interrogating, characterizing, and sorting stem cells.
Abstract: The relatively new field of stem cell biology is hampered by a lack of sufficient means to accurately determine the phenotype of cells. Cell-type-specific markers, such as cell surface proteins used for flow cytometry or fluorescence-activated cell sorting, are limited and often recognize multiple members of a stem cell lineage. We sought to develop a complementary approach that would be less dependent on the identification of particular markers for the subpopulations of cells and would instead measure their overall character. We tested whether a microfluidic system using dielectrophoresis (DEP), which induces a frequency-dependent dipole in cells, would be useful for characterizing stem cells and their differentiated progeny. We found that populations of mouse neural stem/precursor cells (NSPCs), differentiated neurons, and differentiated astrocytes had different dielectric properties revealed by DEP. By isolating NSPCs from developmental ages at which they are more likely to generate neurons, or astrocytes, we were able to show that a shift in dielectric property reflecting their fate bias precedes detectable marker expression in these cells and identifies specific progenitor populations. In addition, experimental data and mathematical modeling suggest that DEP curve parameters can indicate cell heterogeneity in mixed cultures. These findings provide evidence for a whole cell property that reflects stem cell fate bias and establish DEP as a tool with unique capabilities for interrogating, characterizing, and sorting stem cells.

Journal ArticleDOI
TL;DR: The development and validation of the neural colony‐forming cell assay (NCFCA), which discriminates stem from progenitor cells on the basis of their proliferative potential is reported, which is anticipated to provide additional clarity in discerning the regulation of NSCs.
Abstract: Advancement in our understanding of the biology of adult stem cells and their therapeutic potential relies heavily on meaningful functional assays that can identify and measure stem cell activity in vivo and in vitro. In the mammalian nervous system, neural stem cells (NSCs) are often studied using a culture system referred to as the neurosphere assay. We previously challenged a central tenet of this assay, that all neurospheres are derived from a NSC, and provided evidence that it overestimates NSC frequency, rendering it inappropriate for quantitation of NSC frequency in relation to NSC regulation. Here we report the development and validation of the neural colony-forming cell assay (NCFCA), which discriminates stem from progenitor cells on the basis of their proliferative potential. We anticipate that the NCFCA will provide additional clarity in discerning the regulation of NSCs, thereby facilitating further advances in the promising application of NSCs for therapeutic use.

Journal ArticleDOI
20 Feb 2008-PLOS ONE
TL;DR: The SD56 human neural stem cells derived under the reported conditions are stable, do not form tumors in vivo and enable functional recovery after stroke, indicating that this hNSC line may offer a renewable, homogenous source of neural cells that will be valuable for basic and translational research.
Abstract: Background Human embryonic stem cells (hESCs) offer a virtually unlimited source of neural cells for structural repair in neurological disorders, such as stroke. Neural cells can be derived from hESCs either by direct enrichment, or by isolating specific growth factor-responsive and expandable populations of human neural stem cells (hNSCs). Studies have indicated that the direct enrichment method generates a heterogeneous population of cells that may contain residual undifferentiated stem cells that could lead to tumor formation in vivo. Methods/Principal Findings We isolated an expandable and homogenous population of hNSCs (named SD56) from hESCs using a defined media supplemented with epidermal growth factor (EGF), basic fibroblast growth factor (bFGF) and leukemia inhibitory growth factor (LIF). These hNSCs grew as an adherent monolayer culture. They were fully neuralized and uniformly expressed molecular features of NSCs, including nestin, vimentin and radial glial markers. These hNSCs did not express the pluripotency markers Oct4 or Nanog, nor did they express markers for the mesoderm or endoderm lineages. The self-renewal property of the hNSCs was characterized by a predominant symmetrical mode of cell division. The SD56 hNSCs differentiated into neurons, astrocytes and oligodendrocytes throughout multiple passages in vitro, as well as after transplantation. Together, these criteria confirm the definitive NSC identity of the SD56 cell line. Importantly, they exhibited no chromosome abnormalities and did not form tumors after implantation into rat ischemic brains and into naive nude rat brains and flanks. Furthermore, hNSCs isolated under these conditions migrated toward the ischemia-injured adult brain parenchyma and improved the independent use of the stroke-impaired forelimb two months post-transplantation. Conclusions/Significance The SD56 human neural stem cells derived under the reported conditions are stable, do not form tumors in vivo and enable functional recovery after stroke. These properties indicate that this hNSC line may offer a renewable, homogenous source of neural cells that will be valuable for basic and translational research.

Journal ArticleDOI
TL;DR: Embryonic pluripotent radial glia and adult neural stem cells may be clonally linked, thus representing a lineage displaying stem cell features in both the developing and mature central nervous system.
Abstract: During the last decade, the role of radial glia has been radically revisited. Rather than being considered a mere structural component serving to guide newborn neurons towards their final destinations, radial glia is now known to be the main source of neurons in several regions of the central nervous system, notably in the cerebral cortex. Radial glial cells differentiate from neuroepithelial progenitors at the beginning of neurogenesis and share with their ancestors the bipolar shape and the expression of some molecular markers. Radial glia, however, can be distinguished from neuroepithelial progenitors by the expression of astroglial markers. Clonal analyses showed that radial glia is a heterogeneous population, comprising both pluripotent and different lineage-restricted neural progenitors. At late-embryonic and postnatal stages, radial glial cells give rise to the neural stem cells responsible for adult neurogenesis. Embryonic pluripotent radial glia and adult neural stem cells may be clonally linked, thus representing a lineage displaying stem cell features in both the developing and mature central nervous system.

Journal ArticleDOI
A. V. Gilyarov1
TL;DR: The structural-functional characteristics of nestin and its presence in various central nervous system cells at different stages of ontogenesis in normal and pathological conditions are discussed.
Abstract: This literature review reflects current knowledge on the intermediate filament protein nestin, which most authors regard as a marker of "neural stem/progenitor cells." The structural-functional characteristics of nestin and its presence in various central nervous system cells at different stages of ontogenesis in normal and pathological conditions are discussed.

Journal ArticleDOI
TL;DR: The findings show that Wnt5a improves the differentiation and functional integration of stem cell-derived DA neurons in vivo and define Wnt 5a-treated neural stem cells as an efficient and safe source of DA neurons for cell replacement therapy in PD.
Abstract: Dopamine (DA) cell replacement therapy in Parkinson disease (PD) can be achieved using human fetal mesencephalic tissue; however, limited tissue availability has hindered further developments. Embryonic stem cells provide a promising alternative, but poor survival and risk of teratoma formation have prevented their clinical application. We present here a method for generating large numbers of DA neurons based on expanding and differentiating ventral midbrain (VM) neural stem cells/progenitors in the presence of key signals necessary for VM DA neuron development. Mouse VM neurospheres (VMNs) expanded with FGF2, differentiated with sonic hedgehog and FGF8, and transfected with Wnt5a (VMN-Wnt5a) generated 10-fold more DA neurons than did conventional FGF2-treated VMNs. VMN-Wnt5a cells exhibited the transcriptional and biochemical profiles and intrinsic electrophysiological properties of midbrain DA cells. Transplantation of these cells into parkinsonian mice resulted in significant cellular and functional recovery. Importantly, no tumors were detected and only a few transplanted grafts contained sporadic nestin-expressing progenitors. Our findings show that Wnt5a improves the differentiation and functional integration of stem cell-derived DA neurons in vivo and define Wnt5a-treated neural stem cells as an efficient and safe source of DA neurons for cell replacement therapy in PD.

Journal ArticleDOI
TL;DR: It is found that Gli activation is found in gliomas and correlates with grade, and sonic hedgehog (SHH) is expressed in these tumors and also correlates withgrade, and it is observed that an intact tumor microenvironment or neurosphere conditions in vitro are required for Gli activity.
Abstract: Gli signaling is critical for central nervous system development and is implicated in tumorigenesis. To monitor Gli signaling in gliomas in vivo, we created platelet-derived growth factor-induced gliomas in a Gli-luciferase reporter mouse. We find that Gli activation is found in gliomas and correlates with grade. In addition, we find that sonic hedgehog (SHH) is expressed in these tumors and also correlates with grade. We identify microvascular proliferation and pseudopalisades, elements that define high-grade gliomas as SHH-producing microenvironments. We describe two populations of SHH-producing stromal cells that reside in perivascular niche (PVN), namely low-cycling astrocytes and endothelial cells. Using the Ptc-LacZ knock-in mouse as a second Gli responsive reporter, we show beta-galactosidase activity in the PVN and in some tumors diffusely throughout the tumor. Lastly, we observe that SHH is similarly expressed in human gliomas and note that an intact tumor microenvironment or neurosphere conditions in vitro are required for Gli activity.

Journal ArticleDOI
TL;DR: It is demonstrated that the spatiotemporal regulation of central nervous system (CNS) development in vitro is recapitulate by using a neurosphere‐based culture system of embryonic stem (ES) cell‐derived NS/PCs, which can be used to obtain specific neurons from ES cells, is a simple and powerful tool for investigating the underlying mechanisms of CNS development, and is applicable to regenerative treatment for neurological disorders.
Abstract: Neural stem/progenitor cells (NS/PCs) can generate a wide variety of neural cells. However, their fates are generally restricted, depending on the time and location of NS/PC origin. Here we demonstrate that we can recapitulate the spatiotemporal regulation of central nervous system (CNS) development in vitro by using a neurosphere-based culture system of embryonic stem (ES) cell-derived NS/PCs. This ES cell-derived neurosphere system enables the efficient derivation of highly neurogenic fibroblast growth factor-responsive NS/PCs with early temporal identities and high cell-fate plasticity. Over repeated passages, these NS/PCs exhibit temporal progression, becoming epidermal growth factor-responsive gliogenic NS/PCs with late temporal identities; this change is accompanied by an alteration in the epigenetic status of the glial fibrillary acidic protein promoter, similar to that observed in the developing brain. Moreover, the rostrocaudal and dorsoventral spatial identities of the NS/PCs can be successfully regulated by sequential administration of several morphogens. These NS/PCs can differentiate into early-born projection neurons, including cholinergic, catecholaminergic, serotonergic, and motor neurons, that exhibit action potentials in vitro. Finally, these NS/PCs differentiate into neurons that form synaptic contacts with host neurons after their transplantation into wild-type and disease model animals. Thus, this culture system can be used to obtain specific neurons from ES cells, is a simple and powerful tool for investigating the underlying mechanisms of CNS development, and is applicable to regenerative treatment for neurological disorders.

Journal ArticleDOI
TL;DR: A novel role for TLR3 is revealed in the negative regulation of NPC proliferation in the developing brain in wild type but notTLR3−/−-derived NPCs.
Abstract: Toll-like receptors (TLRs) play important roles in innate immunity. Several TLR family members have recently been shown to be expressed by neurons and glial cells in the adult brain, and may mediate responses of these cells to injury and infection. To address the possibility that TLRs play a functional role in development of the nervous system, we analyzed the expression of TLRs during different stages of mouse brain development and assessed the role of TLRs in cell proliferation. TLR3 protein is present in brain cells in early embryonic stages of development, and in cultured neural stem/progenitor cells (NPC). NPC from TLR3-deficient embryos formed greater numbers of neurospheres compared with neurospheres from wild-type embryos. Numbers of proliferating cells, as assessed by phospho histone H3 and proliferating cell nuclear antigen labeling, were also increased in the developing cortex of TLR3-deficient mice compared with wild-type mice in vivo. Treatment of cultured embryonic cortical neurospheres with a TLR3 ligand (polyIC) significantly reduced proliferating (BrdU-labeled) cells and neurosphere formation in wild type but not TLR3−/−-derived NPCs. Our findings reveal a novel role for TLR3 in the negative regulation of NPC proliferation in the developing brain.

Journal ArticleDOI
TL;DR: A global role for this transcriptional repressor in all aspects of neural crest maintenance along the anterior-posterior axis is demonstrated and an unprecedented molecular link between multiple divergent progenitor lineages of the mammalian embryo is established.
Abstract: Understanding the molecular mechanisms of stem cell maintenance is crucial for the ultimate goal of manipulating stem cells for the treatment of disease. Foxd3 is required early in mouse embryogenesis; Foxd3 -/- embryos fail around the time of implantation, cells of the inner cell mass cannot be maintained in vitro, and blastocyst-derived stem cell lines cannot be established. Here, we report that Foxd3 is required for maintenance of the multipotent mammalian neural crest. Using tissue-specific deletion of Foxd3 in the neural crest, we show that Foxd3flox/- ; Wnt1-Cre mice die perinatally with a catastrophic loss of neural crest-derived structures. Cranial neural crest tissues are either missing or severely reduced in size, the peripheral nervous system consists of reduced dorsal root ganglia and cranial nerves, and the entire gastrointestinal tract is devoid of neural crest derivatives. These results demonstrate a global role for this transcriptional repressor in all aspects of neural crest maintenance along the anterior-posterior axis, and establish an unprecedented molecular link between multiple divergent progenitor lineages of the mammalian embryo.