scispace - formally typeset
Search or ask a question
Topic

Neurosphere

About: Neurosphere is a research topic. Over the lifetime, 5145 publications have been published within this topic receiving 321088 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A previously unrecognized mechanism of interaction between the JAK-STAT3 and DLL1-Notch signaling pathways, as well as a pivotal role for this interaction in maintenance of NPCs during early neocortical development are revealed.
Abstract: The transcription factor STAT3 promotes astrocytic differentiation of neural precursor cells (NPCs) during postnatal development of the mouse neocortex, but little has been known of the possible role of STAT3 in the embryonic neocortex. We now show that STAT3 is expressed in NPCs of the mouse embryonic neocortex and that the JAK-STAT3 signaling pathway plays an essential role in the maintenance of NPCs by fibroblast growth factor 2. Conditional deletion of the STAT3 gene in NPCs reduced their capacity to form neurospheres in vitro, as well as promoted neuronal differentiation both in vitro and in vivo. Furthermore, STAT3 was found to maintain NPCs in the undifferentiated state in a non-cell-autonomous manner. STAT3-dependent expression of the Notch ligand Delta-like1 (DLL1) appears to account for the non-cell-autonomous effect of STAT3 on NPC maintenance, as knockdown of DLL1 by RNA interference or inhibition of Notch activation with a γ-secretase inhibitor abrogated the enhancement of neurosphere formation by STAT3. Our results reveal a previously unrecognized mechanism of interaction between the JAK-STAT3 and DLL1-Notch signaling pathways, as well as a pivotal role for this interaction in maintenance of NPCs during early neocortical development.

128 citations

Journal ArticleDOI
TL;DR: Observations indicate that PTEN regulates SVZ precursor cell function and is particularly important for migration and apoptosis in response to oxidative stress.

128 citations

Journal ArticleDOI
TL;DR: It is shown that rodent neural precursor cells isolated and expanded in culture as neurospheres (NS) can be genetically modified to express green fluorescent protein (GFP) or to release GDNF using lentiviral constructs and that sustained levels of neural precursor‐mediated transgene expression can be achieved following transplantation in the future.
Abstract: Glial cell line-derived neurotrophic factor (GDNF) has been shown to increase the survival of dopamine neurons in a variety of in vitro and in vivo model systems. Therefore, it constitutes an important therapeutic protein with the potential to ameliorate dopamine neuronal degeneration in Parkinson's disease or to support dopamine neuronal replacement strategies. However, biophysical and practical considerations present obstacles for the direct delivery of the GDNF protein to CNS neurons. Here we show that rodent neural precursor cells isolated and expanded in culture as neurospheres (NS) can be genetically modified to express green fluorescent protein (GFP) or to release GDNF using lentiviral constructs. GDNF-NS increased the fibre outgrowth of primary embryonic dopamine neurons in cocultures, showing that the protein was released in biologically significant quantities. Furthermore, after transplantation into the 6-hydroxydopamine-lesioned rat striatum, GDNF-NS significantly increased the survival of cografted primary dopamine neurons. However, this was not reflected in behavioural recovery in these animals. We found that, by 6 weeks, few cells expressed GDNF or GFP, suggesting either that transgene expression was down-regulated over time or that the cells died. This may explain the initial effects on dopamine neuronal survival within the graft but the lack of long-term effect on subsequent fibre outgrowth and behaviour. Providing sustained levels of neural precursor-mediated transgene expression can be achieved following transplantation in the future; this approach may prove beneficial as an alternative therapeutic strategy in the cell-based management of Parkinson's disease.

128 citations

Journal ArticleDOI
TL;DR: It is suggested that Wnts depend on Shh or FGF2 to promote progenitor maturation to an SVZ state in the embryonic cortex, as reported for Wnt 7a and 7b.
Abstract: In the embryonic mouse cerebral cortex, progenitors in the ventricular zone (VZ) undergo a developmental change between embryonic day 13 (E13) and E15. This results in the generation of a secondary proliferative population and the appearance of a second germinal layer, the subventricular zone (SVZ). We have shown previously that bone morphogenetic proteins (BMPs) and fibroblast growth factor 2 (FGF2) act antagonistically to regulate the development of a subset of SVZ progenitors that normally express a high level of epidermal growth factor (EGF) receptors and divide in response to EGF. In the present study, we show that Wnt 7a, Wnt 7b, and Sonic hedgehog (Shh) promote progenitor maturation in explant cultures, as reported for FGF2. Wnts 7a and 7b also stimulate the proliferation of neurogenic progenitors and increase the number of cells that can generate primary neurospheres. To determine whether Wnts, FGF2, and Shh act independently or in a common pathway, each factor was inhibited in cortical explants. This revealed that endogenous Wnts, FGF2, and Shh normally contribute to progenitor maturation. Moreover, Wnt 7a depends on FGF2 or Shh to promote maturation but not proliferation. Maturation induced by blocking BMPs also depends on Shh. In contrast, FGF2 promotes maturation by a Shh-independent mechanism. In vivo, progenitors infected with a Wnt 7a retrovirus at E10.5 were found preferentially in the SVZ at E16.5. These findings suggest that Wnts depend on Shh or FGF2 to promote progenitor maturation to an SVZ state in the embryonic cortex.

128 citations

Journal ArticleDOI
TL;DR: TGF-beta signaling controls the size of a specific brain area, the dorsal midbrain, by antagonizing canonical Wnt signaling and negatively regulating self-renewal of neuroepithelial stem cells.

128 citations


Network Information
Related Topics (5)
Cellular differentiation
90.9K papers, 6M citations
89% related
Stem cell
129.1K papers, 5.9M citations
89% related
Signal transduction
122.6K papers, 8.2M citations
85% related
Apoptosis
115.4K papers, 4.8M citations
85% related
Cell culture
133.3K papers, 5.3M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
2023131
2022140
2021121
2020121
2019124