scispace - formally typeset
Search or ask a question
Topic

Neurosphere

About: Neurosphere is a research topic. Over the lifetime, 5145 publications have been published within this topic receiving 321088 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that the Notch ligand Delta-like 1 (Dll1) is required to maintain quiescent NSCs in the adult mouse subventricular zone and suggests a model in which N SCs produce their own niche cells for their maintenance through asymmetric Dll1 inheritance at mitosis.
Abstract: Stem cells often divide asymmetrically to produce one stem cell and one differentiating cell, thus maintaining the stem cell pool. Although neural stem cells (NSCs) in the adult mouse subventricular zone have been suggested to divide asymmetrically, intrinsic cell fate determinants for asymmetric NSC division are largely unknown. Stem cell niches are important for stem cell maintenance, but the niche for the maintenance of adult quiescent NSCs has remained obscure. Here we show that the Notch ligand Delta-like 1 (Dll1) is required to maintain quiescent NSCs in the adult mouse subventricular zone. Dll1 protein is induced in activated NSCs and segregates to one daughter cell during mitosis. Dll1-expressing cells reside in close proximity to quiescent NSCs, suggesting a feedback signal for NSC maintenance by their sister cells and progeny. Our data suggest a model in which NSCs produce their own niche cells for their maintenance through asymmetric Dll1 inheritance at mitosis.

111 citations

Journal ArticleDOI
TL;DR: F fate of neural stem cells during development is regulated by cell-intrinsic programs, such as epigenetic modification (including DNA methylation), and signaling crosstalk of cell-external mediators (including IL-6 family cytokines).
Abstract: In the developing brain neurons, astrocytes, and oligodendrocytes are differentiated from common multipotent progenitors called neural stem cells. We have examined the effect of cytokines on mouse neuroepithelial cells that are known to contain neural stem cells. Cytokines belonging to the interleukin (IL)-6 family and those classified into the bone morphogenetic protein (BMP) family act in synergy on neuroepithelial cells to induce astrocyte differentiation. Cooperation of these two types of cytokines is explained by the formulation of a complex between their respective downstream transcription factors (signal tranducer and activator of transcription [STAT]-3 and Smad1), bridged by a transcriptional coactivator (p300). Whereas BMPs family cytokines are involved in astrocyte differentiation, they inhibit neuronal differentiation. This appears to change the fate of neural progenitor cells from neurogenesis to astrocytogenesis. Interestingly, during brain development, neuronal differentiation starts at a very early stage and continues throughout development, whereas astrocytes appear just before term. We have shown that astrocyte differentiation is largely dependent on IL-6 family cytokine-mediated STAT3 activation and that there exists a STAT3 binding element in the promoter region of the gene for the astrocyte marker glial fibrillary acidic protein. A cytosine residue in this element is highly methylated in neuroepithelial cells in a midgestational stage but becomes demethylated in accordance with brain development. Because this methylation inhibits STAT3 binding, we suggest that DNA methylation is a critical determinant in the developmental stage-dependent regulation of astrocytogeneis. In conclusion, fate of neural stem cells during development is regulated by cell-intrinsic programs, such as epigenetic modification (including DNA methylation), and signaling crosstalk of cell-external mediators (including IL-6 family cytokines).

111 citations

Journal ArticleDOI
TL;DR: These findings suggest an unprecedented degree of inducible plasticity is retained by cells of the adult central nervous system and are amenable to genetic modification and transplantation.
Abstract: The isolation and expansion of human neural cell types has become increasingly relevant in restorative neurobiology. Although embryonic and fetal tissue are frequently envisaged as providing sufficiently primordial cells for such applications, the developmental plasticity of endogenous adult neural cells remains largely unclear. To examine the developmental potential of adult human brain cells, we applied conditions favoring the growth of neural stem cells to multiple cortical regions, resulting in the identification and selection of a population of adult human neural progenitors (AHNPs). These nestin+ progenitors may be derived from multiple forebrain regions, are maintainable in adherent conditions, co-express multiple glial and immature markers, and are highly expandable, allowing a single progenitor to theoretically form sufficient cells for∼ 4×107 adult brains. AHNPs longitudinally maintain the ability to generate both glial and neuronal cell types in vivo and in vitro, and are amenable to genetic modification and transplantation. These findings suggest an unprecedented degree of inducible plasticity is retained by cells of the adult central nervous system.

110 citations

Journal ArticleDOI
01 Feb 2006-Glia
TL;DR: It is demonstrated that GFAP‐expressing cells derived from postnatal and adult forebrain are heterogeneous in both molecular phenotype and neurogenic potential in vitro, and that this heterogeneity exists before exposure to neurogenic conditions.
Abstract: Recent findings show that the predominant multipotent neural stem cells (NSCs) isolated from postnatal and adult mouse brain express glial fibrillary acid protein (GFAP), a protein commonly associated with astrocytes, and that primary astrocyte cultures can contain GFAP-expressing cells that act as multipotent NSCs when transferred to neurogenic conditions. The relationship of GFAP-expressing NSCs to GFAP-expressing astrocytes is unclear, but has important implications. We compared the phenotype and neurogenic potential of GFAP-expressing cells derived from different CNS regions and maintained in vitro under different conditions. Multiple labeling immunohistochemistry revealed that both primary astrocyte cultures and adherent neurogenic cultures derived from postnatal or adult periventricular tissue contained subpopulations of GFAP-expressing cells that co-expressed nestin and LeX/CD15, two molecules associated with NSCs. In contrast, GFAP-expressing cells in similar cultures prepared from adult cerebral cortex did not express detectable levels of LeX/CD15, and exhibited no neurogenic potential. Fluorescence-activated cell sorting (FACS) of both primary astrocyte cultures and adherent neurogenic cultures for LeX/CD15 showed that GFAP-expressing cells competent to act as multipotent NSCs were concentrated in the LeX-positive fraction. Using neurosphere assays and a transgenic ablation strategy, we confirmed that the predominant NSCs in primary astrocyte and adherent neurogenic cultures were GFAP-expressing cells. These findings demonstrate that GFAP-expressing cells derived from postnatal and adult forebrain are heterogeneous in both molecular phenotype and neurogenic potential in vitro, and that this heterogeneity exists before exposure to neurogenic conditions. The findings provide evidence that GFAP-expressing NSCs are phenotypically and functionally distinct from non-neurogenic astrocytes.

110 citations

Journal ArticleDOI
TL;DR: Results suggest that strategies focused on STAT3 inhibition are efficient at the level of “stem‐like” cells and could be of interest for therapeutic purposes in patients with malignant GBM.
Abstract: Glioblastoma (GBM), the highest-grade form of gliomas, is the most frequent and the most aggressive. Recently, a subpopulation of cells with stem cells characteristics, commonly named "tumor-initiating stem cells" (TISCs) or "cancer stem cells" (CSCs) were identified in GBM. These cells were shown to be highly resistant to chemotherapeutic drugs and to ionizing radiations. Consequently, the knowledge of the signals that regulate the functions and survival of TISCs is crucial. In our work, we describe a neurosphere-initiating cell (NS-IC) assay to quantify TISC/CSCs from patients with GBM and show that these cells are tumorigenic in vivo. We demonstrate that the intracellular signal transducer and activator of transcription STAT3 is constitutively activated by phosphorylation preferentially on serine 727 in these cells. Moreover, we demonstrate that the selective inhibition of STAT3 by the chemical compound Stattic or by siRNA STAT3 abrogates TISC/CSC proliferation and NS-IC suggesting that self-renewal of GBM "stem-like" cells depends on the presence of STAT3 for their maintenance. Finally, we show that inhibition of STAT3 by Stattic sensitizes TISC/CSCs to the inhibitory action of Temozolomide with a strong synergistic effect of both drugs. Overall, these results suggest that strategies focused on STAT3 inhibition are efficient at the level of "stem-like" cells and could be of interest for therapeutic purposes in patients with malignant GBM.

110 citations


Network Information
Related Topics (5)
Cellular differentiation
90.9K papers, 6M citations
89% related
Stem cell
129.1K papers, 5.9M citations
89% related
Signal transduction
122.6K papers, 8.2M citations
85% related
Apoptosis
115.4K papers, 4.8M citations
85% related
Cell culture
133.3K papers, 5.3M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
2023131
2022140
2021121
2020121
2019124