scispace - formally typeset
Search or ask a question
Topic

Neurosphere

About: Neurosphere is a research topic. Over the lifetime, 5145 publications have been published within this topic receiving 321088 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Findings suggest the suitability of the 3D culture system for the proliferation and differentiation of neural precursor cells.

95 citations

Journal ArticleDOI
Colin McGuckin1, Marcin Jurga1, Hamad Ali1, Marko Strbad1, Nicolas Forraz1 
TL;DR: This 3-week protocol produces embryonic-like stem cells from human umbilical cord blood (CBEs) for neural differentiation using a three-step system (cell isolation/expansion/differentiation) comparable to protocols described for culturing human embryonic stem cells and cells from other somatic stem cell sources.
Abstract: This 3-week protocol produces embryonic-like stem cells from human umbilical cord blood (CBEs) for neural differentiation using a three-step system (cell isolation/expansion/differentiation). The CBE isolation produces a highly purified fraction (CD45-, CD33-, CD7-, CD235a-) of small pluripotent stem cells (2-3 microm in diameter) coexpressing embryonic stem cell markers including Oct4 and Sox2. Initial CBE expansion is performed in high density (5-10 millions per ml) in the presence of extracellular matrix proteins and epidermal growth factor. Subsequent neural differentiation of CBEs requires sequential introduction of morphogenes, retinoic acid, brain-derived neurotrophic factor and cyclic AMP. Described methods emphasize defined media and reagents at all stages of the experiment comparable to protocols described for culturing human embryonic stem cells and cells from other somatic stem cell sources. Neural progenitor and cells generated from CBEs may be used for in vitro drug testing and cell-based assays and potentially for clinical transplantation.

95 citations

Journal ArticleDOI
TL;DR: Although LIFR signaling is not necessary for NSC self-renewal, it enhances both the clonogenicity and the expression of GFAP by these multipotential cells.

95 citations

Journal ArticleDOI
TL;DR: The first transcriptome for mouse epidermal neural crest stem cells (EPI‐NCSC), formerly eNCSCs, is reported and an NCSC molecular signature is defined that consists of a panel of 19 genes and is representative of both EPI‐ NCSC and NCSC.
Abstract: Here, we report the first transcriptome for mouse epidermal neural crest stem cells (EPI-NCSC, formerly eNCSCs). In addition, our study resolves conflicting opinions in the literature by showing that EPI-NCSC are distinct from other types of skin-resident stem cells/progenitors. Finally, with the three gene profiles, we have established a foundation and provide a valuable resource for future mouse NCSC research. EPI-NCSC represent a novel type of multipotent adult stem cell that originates from the embryonic neural crest and resides in the bulge of hair follicles. We performed gene profiling by LongSAGE (long serial analysis of gene expression) with mRNA from EPI-NCSC, embryonic NCSC, and in vitro differentiated embryonic neural crest progeny. We have identified important differentially expressed genes, including novel genes and disease genes. Furthermore, using stringent criteria, we have defined an NCSC molecular signature that consists of a panel of 19 genes and is representative of both EPI-NCSC and NCSC. EPI-NCSC have characteristics that combine advantages of embryonic and adult stem cells. Similar to embryonic stem cells, EPI-NCSC have a high degree of innate plasticity, they can be isolated at high levels of purity, and they can be expanded in vitro. Similar to other types of adult stem cell, EPI-NCSC are readily accessible by minimal invasive procedure. Multipotent adult mammalian stem cells are of great interest because of their potential value in future cell replacement therapy by autologous transplantation, which avoids graft rejection.

94 citations

Journal ArticleDOI
TL;DR: The combined results indicate that acutely transplanted radial glia can migrate to form bridges across spinal cord lesions in vivo and promote functional recovery following spinal cord injury by protecting against macrophages and secondary damage.

94 citations


Network Information
Related Topics (5)
Cellular differentiation
90.9K papers, 6M citations
89% related
Stem cell
129.1K papers, 5.9M citations
89% related
Signal transduction
122.6K papers, 8.2M citations
85% related
Apoptosis
115.4K papers, 4.8M citations
85% related
Cell culture
133.3K papers, 5.3M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
2023131
2022140
2021121
2020121
2019124