scispace - formally typeset
Search or ask a question
Topic

Neurosphere

About: Neurosphere is a research topic. Over the lifetime, 5145 publications have been published within this topic receiving 321088 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: It is demonstrated that both the lateral ventricle wall and the hippocampus of the adult human brain harbor self-renewing cells capable of generating neurons, astrocytes, and oligodendrocyte in vitro, i.e., bona fide neural stem cells.

419 citations

Journal ArticleDOI
TL;DR: It is shown that the prototypical tumor suppressor p53, which plays an important role in brain tumor initiation and growth, is expressed in the neural stem cell lineage in the adult brain, and implicate p53 as a suppressor of tissue and cancer stem cell self-renewal.
Abstract: There is increasing evidence that tumors are heterogeneous and that a subset of cells act as cancer stem cells. Several proto-oncogenes and tumor suppressors control key aspects of stem cell function, suggesting that similar mechanisms control normal and cancer stem cell properties. We show here that the prototypical tumor suppressor p53, which plays an important role in brain tumor initiation and growth, is expressed in the neural stem cell lineage in the adult brain. p53 negatively regulates proliferation and survival, and thereby self-renewal, of neural stem cells. Analysis of the neural stem cell transcriptome identified the dysregulation of several cell cycle regulators in the absence of p53, most notably a pronounced downregulation of p21 expression. These data implicate p53 as a suppressor of tissue and cancer stem cell self-renewal.

418 citations

Journal ArticleDOI
01 May 2008-Oncogene
TL;DR: The generation of another distinct cluster of cell lines showing similarly homogeneous profiling but restricted stem cell properties suggests that different phenotypes exist, each of which may lead to the typical appearance of glioblastoma.
Abstract: Tumor cells with stem cell-like properties can be cultured from human glioblastomas by using conditions that select for the expansion of neural stem cells. We generated cell lines from glioblastoma specimens with the goal to obtain model systems for glioma stem cell biology. Unsupervised analysis of the expression profiles of nine cell lines established under neural stem cell conditions yielded two distinct clusters. Four cell lines were characterized by the expression of neurodevelopmental genes. They showed a multipotent differentiation profile along neuronal, astroglial and oligodendroglial lineages, grew spherically in vitro, expressed CD133 and formed highly invasive tumors in vivo. The other five cell lines shared expression signatures enriched for extracellular matrix-related genes, had a more restricted differentiation capacity, contained no or fewer CD133+ cells, grew semiadherent or adherent in vitro and displayed reduced tumorigenicity and invasion in vivo. Our findings show that stable, multipotent glioblastoma cell lines with a full stem-like phenotype express neurodevelopmental genes as a distinctive feature, which may offer therapeutic targeting opportunities. The generation of another distinct cluster of cell lines showing similarly homogeneous profiling but restricted stem cell properties suggests that different phenotypes exist, each of which may lead to the typical appearance of glioblastoma.

415 citations

Journal ArticleDOI
TL;DR: A survey of the differentiation potential of these NSCs outlines their extreme plasticity that seems to outstretch the brain boundaries, so that these neuroectodermal stem cells may give rise to cells that derive from developmentally distinct tissues.
Abstract: This review focuses on the nature and functional properties of stem cells of the adult mammalian central nervous system (CNS). It has recently been shown that cell turnover, including neurons, does occur in the mature CNS, thanks to the persistence of precursor cells that possess the functional characteristics of bona-fide neural stem cells (NSCs) within restricted brain areas. We discuss how the subventricular zone of the forebrain (SVZ) is the most active neurogenetic area and the richest source of NSCs. These NSCs ensure a life-long contribution of new neurons to the olfactory bulb and, when placed in culture, can be grown and extensively expanded for months, allowing the generation of stem cell lines, which maintain stable and constant functional properties. A survey of the differentiation potential of these NSCs, both in vitro and in vivo, outlines their extreme plasticity that seems to outstretch the brain boundaries, so that these neuroectodermal stem cells may give rise to cells that derive from developmentally distinct tissues. A critical discussion of the latest, controversial findings regarding this surprising phenomenon is provided.

412 citations

Journal ArticleDOI
TL;DR: Variation in the levels of E-cadherin, beta-catenin and plakoglobin within the basal layer suggests that stem cells may also differ from transit amplifying cells in intercellular adhesiveness.
Abstract: Within the epidermis, proliferation takes place in the basal layer of keratinocytes that are attached to an underlying basement membrane. Cells that leave the basal layer undergo terminal differentiation as they move towards the tissue surface. The basal layer contains two types of proliferative keratinocyte: stem cells, which have unlimited self-renewal capacity, and transit amplifying cells, those daughters of stem cells that are destined to withdraw from the cell cycle and terminally differentiate after a few rounds of division. Stem cells express higher levels of the beta 1-integrin family of extracellular matrix receptors than transit amplifying cells and this can be used to isolate each subpopulation of keratinocyte and to determine its location within the epidermis. Variation in the levels of E-cadherin, beta-catenin and plakoglobin within the basal layer suggests that stem cells may also differ from transit amplifying cells in intercellular adhesiveness. Stem cells have a patterned distribution within the epidermal basal layer and patterning is subject to autoregulation. Constitutive expression of the transcription factor c-Myc promotes terminal differentiation by driving keratinocytes from the stem cell compartment into the transit amplifying compartment.

410 citations


Network Information
Related Topics (5)
Cellular differentiation
90.9K papers, 6M citations
89% related
Stem cell
129.1K papers, 5.9M citations
89% related
Signal transduction
122.6K papers, 8.2M citations
85% related
Apoptosis
115.4K papers, 4.8M citations
85% related
Cell culture
133.3K papers, 5.3M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
2023131
2022140
2021121
2020121
2019124