scispace - formally typeset
Search or ask a question
Topic

Neurosphere

About: Neurosphere is a research topic. Over the lifetime, 5145 publications have been published within this topic receiving 321088 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The data show that Abeta can impair cortical neurogenesis, and suggest that this adverse effect of Abeta contributes to the depletion of neurons and the resulting olfactory and cognitive deficits in AD.
Abstract: The adult mammalian brain contains populations of stem cells that can proliferate and then differentiate into neurons or glia. The highest concentration of such neural progenitor cells (NPC) is located in the subventricular zone (SVZ) and these cells can produce new olfactory bulb and cerebral cortical neurons. NPC may provide a cellular reservoir for replacement of cells lost during normal cell turnover and after brain injury. However, neurogenesis does not compensate for neuronal loss in age-related neurodegenerative disorders such as Alzheimer’s disease (AD), suggesting the possibility that impaired neurogenesis contributes to the pathogenesis of such disorders. We now report that amyloid β-peptide (Aβ), a self-aggregating neurotoxic protein thought to cause AD, can impair neurogenesis in the SVZ/cerebral cortex of adult mice and in human cortical NPC in culture. The proliferation and migration of NPC in the SVZ of amyloid precursor protein (APP) mutant mice, and in mice receiving an intraventricular infusion of Aβ, were greatly decreased compared to control mice. Studies of NPC neurosphere cultures derived from human embryonic cerebral cortex showed that Aβ can suppress NPC proliferation and differentiation, and can induce apoptosis. The adverse effects of Aβ on neurogenesis were associated with a disruption of calcium regulation in the NPC. Our data show that Aβ can impair cortical neurogenesis, and suggest that this adverse effect of Aβ contributes to the depletion of neurons and the resulting olfactory and cognitive deficits in AD.

244 citations

Journal ArticleDOI
TL;DR: It is shown that the cardinal properties of neural stem cells (self-renewal and multipotentiality) are conserved among embryonic cortex, ganglionic eminence and midbrain/hindbrain, but that these different stem cells express separate molecular markers of regional identity in vitro, even after passaging.
Abstract: Regional patterning in the developing mammalian brain is partially regulated by restricted gene expression patterns within the germinal zone, which is composed of stem cells and their progenitor cell progeny. Whether or not neural stem cells, which are considered at the top of the neural lineage hierarchy, are regionally specified remains unknown. Here we show that the cardinal properties of neural stem cells (self-renewal and multipotentiality) are conserved among embryonic cortex, ganglionic eminence and midbrain/hindbrain, but that these different stem cells express separate molecular markers of regional identity in vitro, even after passaging. Neural stem cell progeny derived from ganglionic eminence but not from other regions are specified to respond to local environmental cues to migrate ventrolaterally, when initially deposited on the germinal layer of ganglionic eminence in organotypic slice cultures. Cues exclusively from the ventral forebrain in a 5 day co-culture paradigm could induce both early onset and late onset marker gene expression of regional identity in neural stem cell colonies derived from both the dorsal and ventral forebrain as well as from the midbrain/hindbrain. Thus, neural stem cells and their progeny are regionally specified in the developing brain, but this regional identity can be altered by local inductive cues.

243 citations

Journal ArticleDOI
TL;DR: A new in vitro priming procedure is reported that generates a nearly pure population of neurons from fetal human neural stem cells (hNSCs) transplanted into adult rat CNS and the grafted cells differentiated by acquiring a cholinergic phenotype in a region-specific manner.
Abstract: Pluripotent or multipotent stem cells isolated from human embryos or adult central nervous system (CNS) may provide new neurons to ameliorate neural disorders. A major obstacle, however, is that the majority of such cells do not differentiate into neurons when grafted into non-neurogenic areas of the adult CNS. Here we report a new in vitro priming procedure that generates a nearly pure population of neurons from fetal human neural stem cells (hNSCs) transplanted into adult rat CNS. Furthermore, the grafted cells differentiated by acquiring a cholinergic phenotype in a region-specific manner. This technology may advance stem cell-based therapy to replace lost neurons in neural injury or neurodegenerative disorders.

242 citations

Journal ArticleDOI
TL;DR: GLI1 expression in Nestin+ neural progenitors increases precursor and clonogenic stem cell numbers in vivo and in vitro and p53 regulates the phosphorylation of a novel N’ truncated putative activator isoform of GLI1 in human cells.
Abstract: How cell numbers are determined is not understood. Hedgehog-Gli activity is involved in precursor cell proliferation and stem cell self-renewal, and its deregulation sustains the growth of many human tumours. However, it is not known whether GLI1, the final mediator of Hh signals, controls stem cell numbers, and how its activity is restricted to curtail tumourigenesis. Here we have altered the levels of GLI1 and p53, the major tumour suppressor, in multiple systems. We show that GLI1 expression in Nestin+ neural progenitors increases precursor and clonogenic stem cell numbers in vivo and in vitro. In contrast, p53 inhibits GLI1-driven neural stem cell self-renewal, tumour growth and proliferation. Mechanistically, p53 inhibits the activity, nuclear localisation and levels of GLI1 and in turn, GLI1 represses p53, establishing an inhibitory loop. We also find that p53 regulates the phosphorylation of a novel N' truncated putative activator isoform of GLI1 in human cells. The balance of GLI1 and p53 functions, thus, determines cell numbers, and prevalence of p53 restricts GLI1-driven stem cell expansion and tumourigenesis.

242 citations

Journal ArticleDOI
TL;DR: The results suggest that MSCs in adult bone marrow have at least two developmental origins, one of which is the neural crest.

241 citations


Network Information
Related Topics (5)
Cellular differentiation
90.9K papers, 6M citations
89% related
Stem cell
129.1K papers, 5.9M citations
89% related
Signal transduction
122.6K papers, 8.2M citations
85% related
Apoptosis
115.4K papers, 4.8M citations
85% related
Cell culture
133.3K papers, 5.3M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
2023131
2022140
2021121
2020121
2019124