scispace - formally typeset
Search or ask a question
Topic

Neurosphere

About: Neurosphere is a research topic. Over the lifetime, 5145 publications have been published within this topic receiving 321088 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The presence of neural crest‐derived corneal precursors (COPs) that initiate spheres by clonal expansion from a single cell and the expression of embryonic neural crest markers Twist, Snail, Slug, and Sox9 are reported to indicate the existence of neural Crest‐derived, multipotent stem cells in the adult cornea.
Abstract: We report the presence of neural crest-derived corneal precursors (COPs) that initiate spheres by clonal expansion from a single cell. COPs expressed the stem cell markers nestin, Notch1, Musashi-1, and ABCG2 and showed the side population cell phenotype. COPs were multipotent with the ability to differentiate into adipocytes, chondrocytes, as well as neural cells, as shown by the expression of β-III-tubulin, glial fibrillary acidic protein, and neurofilament-M. COP spheres prepared from E/nestin-enhanced green fluorescent protein (EGFP) mice showed induction of EGFP expression that was not originally observed in the cornea, indicating activation of the neural-specific nestin second intronic enhancer in culture. COPs were Sca-1+, CD34+, CD45−, and c-kit−. Numerous GFP+ cells were observed in the corneas of mice transplanted with whole bone marrow of transgenic mice ubiquitously expressing GFP; however, no GFP+ COP spheres were initiated from these mice. On the other hand, COP spheres from transgenic mice encoding P0-Cre/Floxed-EGFP as well as Wnt1-Cre/Floxed-EGFP were GFP+, indicating the neural crest origin of COPs, which was confirmed by the expression of the embryonic neural crest markers Twist, Snail, Slug, and Sox9. Taken together, these data indicate the existence of neural crest-derived, multipotent stem cells in the adult cornea.

199 citations

Journal ArticleDOI
TL;DR: The data indicate that SHED, potentially derived from neural crest cells, may be an optimal source of postnatal stem cells for PD treatment, and transplantation of SHED spheres into the striatum of parkinsonian rats partially improved the apomorphine-evoked rotation of behavorial disorders.
Abstract: Stem cells from human exfoliated deciduous teeth (SHED) have been identified as a novel population of postnatal stem cells capable of differentiating into neural cells, odontogenic cells, and adipocytes. SHED were reported to differentiate into neural cells based on cellular morphology and the expression of early neuronal markers when cultured under neural inductive conditions. This study therefore investigated the therapeutic efficacy of SHED in alleviating Parkinson's disease (PD) in a rat model. We found that SHED could be induced to form neural-like spheres in a medium optimized for neural stem cells in vitro. After incubation with a cocktail of cytokines including sonic hedgehog, fibroblast growth factor 8, glial cell line-derived neurotrophic factor, and forskolin, these SHED-derived spheres further differentiated into a cell population that contained specific dopaminergic neurons. Moreover, transplantation of SHED spheres into the striatum of parkinsonian rats partially improved the apomorphine-evoked rotation of behavorial disorders compared to transplantation of control SHED. Our data indicate that SHED, potentially derived from neural crest cells, may be an optimal source of postnatal stem cells for PD treatment.

199 citations

Journal ArticleDOI
TL;DR: It is suggested that stem cells derived from the parthenogenetically activated nonhuman primate egg provide a potential source for autologous cell therapy in the female and bypass the need for creating a competent embryo.
Abstract: Parthenogenesis is the biological phenomenon by which embryonic development is initiated without male contribution. Whereas parthenogenesis is a common mode of reproduction in lower organisms, the mammalian parthenote fails to produce a successful pregnancy. We herein describe in vitro parthenogenetic development of monkey (Macaca fascicularis) eggs to the blastocyst stage, and their use to create a pluripotent line of stem cells. These monkey stem cells (Cyno-1 cells) are positive for telomerase activity and are immunoreactive for alkaline phosphatase, octamer-binding transcription factor 4 (Oct-4), stage-specific embryonic antigen 4 (SSEA-4), tumor rejection antigen 1-60 (TRA 1-60), and tumor rejection antigen 1-81 (TRA 1-81) (traditional markers of human embryonic stem cells). They have a normal chromosome karyotype (40 + 2) and can be maintained in vitro in an undifferentiated state for extended periods of time. Cyno-1 cells can be differentiated in vitro into dopaminergic and serotonergic neurons, contractile cardiomyocyte-like cells, smooth muscle, ciliated epithelia, and adipocytes. When Cyno-1 cells were injected into severe combined immunodeficient mice, teratomas with derivatives from all three embryonic germ layers were obtained. When grown on fibronectin/laminin-coated plates and in neural progenitor medium, Cyno-1 cells assume a neural precursor phenotype (immunoreactive for nestin). However, these cells remain proliferative and express no functional ion channels. When transferred to differentiation conditions, the nestin-positive precursors assume neuronal and epithelial morphologies. Over time, these cells acquire electrophysiological characteristics of functional neurons (appearance of tetrodotoxin-sensitive, voltage-dependent sodium channels). These results suggest that stem cells derived from the parthenogenetically activated nonhuman primate egg provide a potential source for autologous cell therapy in the female and bypass the need for creating a competent embryo.

199 citations

Journal ArticleDOI
TL;DR: The TNF-mediated signal transduction cascade in neural stem cells (NSCs) that results in increased proliferation is described for the first time and IKK-α/β-dependent proliferation and markedly up-regulated cyclin D1 expression after TNF treatment is demonstrated.
Abstract: Brain inflammation has been recognized as a complex phenomenon with numerous related aspects. In addition to the very well-described neurodegenerative effect of inflammation, several studies suggest that inflammatory signals exert a potentially positive influence on neural stem cell proliferation, migration and differentiation. Tumor necrosis factor alpha (TNF-α) is one of the best-characterized mediators of inflammation. To date, conclusions about the action of TNF on neural stem or progenitor cells (NSCs, NPCs) have been conflicting. TNF seems to activate NSC proliferation and to inhibit their differentiation into NPCs. The purpose of the present study was to analyze the molecular signal transduction mechanisms induced by TNF and resulting in NSC proliferation. Here we describe for the first time the TNF-mediated signal transduction cascade in neural stem cells (NSCs) that results in increased proliferation. Moreover, we demonstrate IKK-α/β-dependent proliferation and markedly up-regulated cyclin D1 expression after TNF treatment. The significant increase in proliferation in TNF-treated cells was indicated by increased neurosphere volume, increased bromodeoxyuridin (BrdU) incorporation and a higher total cell number. Furthermore, TNF strongly activated nuclear factor-kappa B (NF-κB) as measured by reporter gene assays and by an activity-specific antibody. Proliferation of control and TNF-treated NSCs was strongly inhibited by expression of the NF-κB super-repressor IκB-AA1. Pharmacological blockade of IκB ubiquitin ligase activity led to comparable decreases in NF-κB activity and proliferation. In addition, IKK-β gene product knock-down via siRNA led to diminished NF-κB activity, attenuated cyclin D1 expression and finally decreased proliferation. In contrast, TGFβ-activated kinase 1 (TAK-1) is partially dispensable for TNF-mediated and endogenous proliferation. Understanding stem cell proliferation is crucial for future regenerative and anti-tumor medicine. TNF-mediated activation of IKK-β resulted in activation of NF-κB and was followed by up-regulation of the bona-fide target gene cyclin D1. Activation of the canonical NF-κB pathway resulted in strongly increased proliferation of NSCs.

198 citations

Journal ArticleDOI
TL;DR: The data provide strong evidence for the existence of a CD44+ ARP in the developing nervous system, which can be generated from GRP cells in mass or clonal cultures and in vivo after transplantation, suggesting a sequential differentiation of neuroepithelial stem cells to GRPs to ARPs and then to astrocytes.

197 citations


Network Information
Related Topics (5)
Cellular differentiation
90.9K papers, 6M citations
89% related
Stem cell
129.1K papers, 5.9M citations
89% related
Signal transduction
122.6K papers, 8.2M citations
85% related
Apoptosis
115.4K papers, 4.8M citations
85% related
Cell culture
133.3K papers, 5.3M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
2023131
2022140
2021121
2020121
2019124