scispace - formally typeset
Search or ask a question
Topic

Neurosphere

About: Neurosphere is a research topic. Over the lifetime, 5145 publications have been published within this topic receiving 321088 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The recruitment of similar FGF-2-responsive cells from the adult optic nerve, a structure well isolated from the neurogenic zones within the brain, confirmed that neuron-competent precursors naturally exist in widely divergent tissues of the adult brain.
Abstract: During development of the mammalian brain, both neurons and glia are generated from multipotent neural stem cells. Although neurogenesis ceases in most areas at birth, stem cells continue to generate neurons within the subventricular zone and hippocampal dentate gyrus throughout adult life. In this work, we provide the first demonstration that precursors native to regions of the adult brain that generate only glia can also generate neurons after exposure to FGF-2 in vitro. When progenitors isolated from hippocampal tissue were directly compared with cells isolated from the neocortex, both populations were able to initiate a program of proliferative neurogenesis. Genetic marking and lineage analysis showed that a majority of the cells able to generate neurons were multipotent precursors; however, progeny from these precursors acquired the competence to differentiate into neurons only after exposure to FGF-2. The recruitment of similar FGF-2-responsive cells from the adult optic nerve, a structure well isolated from the neurogenic zones within the brain, confirmed that neuron-competent precursors naturally exist in widely divergent tissues of the adult brain.

997 citations

Journal ArticleDOI
01 Sep 2002-Glia
TL;DR: The data suggest that the latent critical stem cell characteristics can be epigenetically induced by growth conditions not only in cells from neurogenic regions of normal CNS but also in cells in cortical glial tumors.
Abstract: Neural stem cells from neurogenic regions of mammalian CNS are clonogenic in an in vitro culture system exploiting serum and anchorage withdrawal in medium supplemented with methyl cellulose and the pleiotropic growth factors EGF, FGF2, and insulin. The aim of this study was to test whether cortical glial tumors contain stem-like cells capable, under this culture system, of forming clones showing intraclonal heterogeneity in the expression of neural lineage-specific proteins. The high frequencies of clone-forming cells (about 0.1-10 x 10(-3)) in clinical tumor specimens with mutated p53, and in neurogenic regions of normal human CNS, suggest that the ability to form clones in this culture system is induced epigenetically. RT-PCR analyses of populations of normal brain- and tumor-derived sister clones revealed transcripts for nestin, neuron-specific enolase, and glial fibrillary acidic protein (GFAP). However, the tumor-derived clones were different from clones derived from neurogenic regions of normal brain in the expression of transcripts specific for genes associated with neural cell fate determination via the Notch-signaling pathway (Delta and Jagged), and cell survival at G2 or mitotic phases (Survivin). Moreover, the individual glioma-derived clones contain cells immunopositive separately for GFAP or neuronal beta-III tubulin, as well as single cells coexpressing both glial and neuronal markers. The data suggest that the latent critical stem cell characteristics can be epigenetically induced by growth conditions not only in cells from neurogenic regions of normal CNS but also in cells from cortical glial tumors. Moreover, tumor stem-like cells with genetically defective responses to epigenetic stimuli may contribute to gliomagenesis and the developmental pathological heterogeneity of glial tumors.

985 citations

Journal ArticleDOI
13 May 2016-Science
TL;DR: Results suggest that ZIKV abrogates neurogenesis during human brain development when it targets human brain cells, reducing their viability and growth as neurospheres and brain organoids.
Abstract: Since the emergence of Zika virus (ZIKV), reports of microcephaly have increased considerably in Brazil; however, causality between the viral epidemic and malformations in fetal brains needs further confirmation. We examined the effects of ZIKV infection in human neural stem cells growing as neurospheres and brain organoids. Using immunocytochemistry and electron microscopy, we showed that ZIKV targets human brain cells, reducing their viability and growth as neurospheres and brain organoids. These results suggest that ZIKV abrogates neurogenesis during human brain development.

975 citations

Journal ArticleDOI
TL;DR: These findings identify morphologically distinctive GFAP-expressing progenitor cells as the predominant sources of constitutive adult neurogenesis, and provide new methods for manipulating and investigating these cells.
Abstract: Establishing the cellular identity in vivo of adult multipotent neural progenitors is fundamental to understanding their biology. We used two transgenic strategies to determine the relative contribution of glial fibrillary acidic protein (GFAP)-expressing progenitors to constitutive neurogenesis in the adult forebrain. Transgenically targeted ablation of dividing GFAP-expressing cells in the adult mouse subependymal and subgranular zones stopped the generation of immunohistochemically identified neuroblasts and new neurons in the olfactory bulb and the hippocampal dentate gyrus. Transgenically targeted cell fate mapping showed that essentially all neuroblasts and neurons newly generated in the adult mouse forebrain in vivo, and in adult multipotent neurospheres in vitro, derived from progenitors that expressed GFAP. Constitutively dividing GFAP-expressing progenitors showed predominantly bipolar or unipolar morphologies with significantly fewer processes than non-neurogenic multipolar astrocytes. These findings identify morphologically distinctive GFAP-expressing progenitor cells as the predominant sources of constitutive adult neurogenesis, and provide new methods for manipulating and investigating these cells.

956 citations

Journal ArticleDOI
TL;DR: This review is about the properties of various highly purified tissue-specific multipotent stem cells and purified oligolineage progenitors and contends that unless the stem or progenitor cells in question have been purified to near homogeneity, one cannot know whether their generation of expected or unexpected progeny is a property of a known cell type.
Abstract: Multipotent stem cells are clonal cells that self-renew as well as differentiate to regenerate adult tissues. Whereas stem cells and their fates are known by unique genetic marker studies, the fate and function of these cells are best studied by their prospective isolation. This review is about the properties of various highly purified tissue-specific multipotent stem cells and purified oligolineage progenitors. We contend that unless the stem or progenitor cells in question have been purified to near homogeneity, one cannot know whether their generation of expected (or unexpected) progeny is a property of a known cell type. It is interesting that in the hematopoietic system the only long-term self-renewing cells in the stem and progenitors pool are the hematopoietic stem cells. This fact is discussed in the context of normal and leukemic hematopoiesis.

955 citations


Network Information
Related Topics (5)
Cellular differentiation
90.9K papers, 6M citations
89% related
Stem cell
129.1K papers, 5.9M citations
89% related
Signal transduction
122.6K papers, 8.2M citations
85% related
Apoptosis
115.4K papers, 4.8M citations
85% related
Cell culture
133.3K papers, 5.3M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
2023131
2022140
2021121
2020121
2019124