scispace - formally typeset
Search or ask a question
Topic

Neurosphere

About: Neurosphere is a research topic. Over the lifetime, 5145 publications have been published within this topic receiving 321088 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: By adding hEGF, bFGF, dbcAMP, IBMX, BDNF, and bF GF-8 into NEUROBASAL media plus B27, BM MSCs were directed toward becoming early and mature NCs.
Abstract: Bone marrow (BM) mesenchymal stem cells (MSCs) are cells capable of expanding and differentiating in vitro into nonhematopoietic cells. Neurotrophic cytokines, such as human epidermal growth factor (hEGF) and bovine fibroblast growth factor (bFGF) can induce differentiation into neural cells (NCs). When BM MSCs were cultured with hEGF and bFGF, RNA expression of neuronal specific markers Nestin, MAP-2, and tyrosine hydroxylase (TH) were observed. We tested a new cytokine combination to generate mature NCs. The plastic-adherent cells were collected and then split when they were 90% confluent from an enriched mononuclear cell layer. At passage 3, MSCs were cultured in neural differentiation media (dbcAMP, IBMX, FGF-8, BDNF, hEGF, and bFGF in NEUROBASAL media plus B27). Cells were counted on day 6. Immunofluorescent staining and reverse transcriptase (RT)-PCR were performed to evaluate the expression of neural markers. On day 6, 66% of cells developed dendrites and presented typical neural cell morphology. Some cells were positive for early neural markers Nestin and beta-tubulin III. Cells expressing mature neuronal markers (NF, NeuN, Tau, Nurr1, GABA, oligodendryte GalC, and glial GFAP) were also seen. By adding hEGF, bFGF, dbcAMP, IBMX, BDNF, and bFGF-8 into NEUROBASAL media plus B27, BM MSCs were directed toward becoming early and mature NCs.

187 citations

Journal ArticleDOI
TL;DR: It is shown that bipotent stem cells are maintained in a distinct niche in the adult zebrafish cerebellum and retain neuroepithelial characteristics, which are critical common determinants to maintain neural stem cell activity in vertebrates.
Abstract: In the adult CNS, neurogenesis takes place in special niches. It is not understood how these niches are formed during development and how they are maintained. In contrast to mammals, stem cell niches are abundant in zebrafish and also found in other parts of the brain than telencephalon. To understand common characteristics of neural stem cell niches in vertebrates, we studied the origin and architecture of a previously unknown stem cell niche using transgenic lines, in vivo imaging, and marker analysis. We show that bipotent stem cells are maintained in a distinct niche in the adult zebrafish cerebellum. Remarkably, the stem cells are not typical glia but instead retain neuroepithelial characteristics. The cerebellar stem cell niche is generated by the coordinated displacement of ventricle and rhombic lip progenitors in a two-step process involving morphogenetic movements and tissue growth. Importantly, the niche and its stem cells still remain in ventricular contact through a previously unknown derivative of the ventricle. Factors propagated in the ventricle are thought to be important regulators of stem cell activity. To test the requirements of one family of important factors, Fibroblast growth factors, we used zebrafish with an inducible dominant-negative Fgf receptor. Inhibition of Fgf signaling leads to significant reduction of stem cell activity. In contrast to the predominant view, adult neural stem cells in nonmammalian vertebrates show more neuroepithelial than glial characteristics. Nevertheless, retained epithelial properties such as distinct polarization and ventricular contact are critical common determinants to maintain neural stem cell activity in vertebrates.

187 citations

Patent
15 Aug 1994
TL;DR: In this paper, a method for the isolation and clonal propagation of mammalian neural crest stem cells and isolated cellular compositions comprising the same was proposed. But this method is not suitable for the cloning of stem cells.
Abstract: The invention includes methods for the isolation and clonal propagation of mammalian neural crest stem cells and isolated cellular compositions comprising the same. The methods employ a novel separation and culturing regimen and bioassays for establishing the generation of neural crest stem cell derivatives. These methods result in the production of non-transformed neural crest stem cells and their progeny. The invention demonstrates, at the clonal level, the self regeneration and asymmetrical division of mammalian neural crest stem cells for the first time in feeder cell-independent cultures. Lineage restriction is demonstrated within a developing clone and is shown to be sensitive to the local environment. Neural crest stem cells cultured on a mixed substrate of poly-D-lysine and fibronectin generate PNS neurons and glia, but on fibronectin alone the stem cells generate PNS glia but not neurons. The neurogenic potential of the stem cells, while not expressed, is maintained over time on fibronectin. The invention further includes transplantation assays which allow for the identification of mammalian neural crest stem cells from various tissues. It also includes methods for transplanting mammalian neural crest stem cells and/or neural or glial progenitors into mammals.

186 citations

Journal ArticleDOI
TL;DR: Dental pulp stem cells (hDP-SCs) were primarily derived from pulp tissues of primary incisors, exfoliated deciduous and permanent third molar teeth, and share some special characteristics of expressing some neural stem cell and epithelial markers.
Abstract: Dental pulp stem cells (hDP-SCs) were primarily derived from pulp tissues of primary incisors, exfoliated deciduous and permanent third molar teeth. To understand the characteristics of hDP-SCs from impacted third molar, proliferation capacities, gene expression profiles, phenotypic, ultrastructural, and differentiation characteristics were analyzed in comparison with human bone marrow-derived mesenchymal stem cells (hBM-MSCs), extensively. hDP-SCs showed more developed and metabolically active cells. Contrary to hBM-MSCs, hDP-SCs strongly expressed both cytokeratin (CK)-18 and -19, which could involve in odontoblast differentiation and dentine repair. The intrinsic neuro-glia characteristics of hDP-MSCs were demonstrated by the expression of several specific transcripts and proteins of neural stem cell and neurons. These cells not only differentiate into adipogenic, osteogenic, and chondrogenic lineage, but also share some special characteristics of expressing some neural stem cell and epithelial markers. Under defined conditions, hDP-SCs are able to differentiate into both neural and vascular endothelial cells in vitro. Dental pulp might provide an alternative source for human MSCs. hDP-SCs with a promising differentiation capacity could be easily isolated, and possible clinical use could be developed for neurodegenerative and oral diseases in the future.

186 citations

Journal ArticleDOI
TL;DR: The findings show that Wnt5a improves the differentiation and functional integration of stem cell-derived DA neurons in vivo and define Wnt 5a-treated neural stem cells as an efficient and safe source of DA neurons for cell replacement therapy in PD.
Abstract: Dopamine (DA) cell replacement therapy in Parkinson disease (PD) can be achieved using human fetal mesencephalic tissue; however, limited tissue availability has hindered further developments. Embryonic stem cells provide a promising alternative, but poor survival and risk of teratoma formation have prevented their clinical application. We present here a method for generating large numbers of DA neurons based on expanding and differentiating ventral midbrain (VM) neural stem cells/progenitors in the presence of key signals necessary for VM DA neuron development. Mouse VM neurospheres (VMNs) expanded with FGF2, differentiated with sonic hedgehog and FGF8, and transfected with Wnt5a (VMN-Wnt5a) generated 10-fold more DA neurons than did conventional FGF2-treated VMNs. VMN-Wnt5a cells exhibited the transcriptional and biochemical profiles and intrinsic electrophysiological properties of midbrain DA cells. Transplantation of these cells into parkinsonian mice resulted in significant cellular and functional recovery. Importantly, no tumors were detected and only a few transplanted grafts contained sporadic nestin-expressing progenitors. Our findings show that Wnt5a improves the differentiation and functional integration of stem cell-derived DA neurons in vivo and define Wnt5a-treated neural stem cells as an efficient and safe source of DA neurons for cell replacement therapy in PD.

185 citations


Network Information
Related Topics (5)
Cellular differentiation
90.9K papers, 6M citations
89% related
Stem cell
129.1K papers, 5.9M citations
89% related
Signal transduction
122.6K papers, 8.2M citations
85% related
Apoptosis
115.4K papers, 4.8M citations
85% related
Cell culture
133.3K papers, 5.3M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
2023131
2022140
2021121
2020121
2019124