scispace - formally typeset
Topic

Neurotoxicity

About: Neurotoxicity is a(n) research topic. Over the lifetime, 12850 publication(s) have been published within this topic receiving 622123 citation(s). The topic is also known as: neural toxicity.
Papers
More filters

Journal ArticleDOI
01 Oct 1988-Neuron

4,555 citations


Journal ArticleDOI
TL;DR: It is hypothesized that impaired synaptic plasticity and associated memory dysfunction during early stage Alzheimer's disease and severe cellular degeneration and dementia during end stage could be caused by the biphasic impact of Abeta-derived diffusible ligands acting upon particular neural signal transduction pathways.
Abstract: Aβ1–42 is a self-associating peptide whose neurotoxic derivatives are thought to play a role in Alzheimer’s pathogenesis. Neurotoxicity of amyloid β protein (Aβ) has been attributed to its fibrillar forms, but experiments presented here characterize neurotoxins that assemble when fibril formation is inhibited. These neurotoxins comprise small diffusible Aβ oligomers (referred to as ADDLs, for Aβ-derived diffusible ligands), which were found to kill mature neurons in organotypic central nervous system cultures at nanomolar concentrations. At cell surfaces, ADDLs bound to trypsin-sensitive sites and surface-derived tryptic peptides blocked binding and afforded neuroprotection. Germ-line knockout of Fyn, a protein tyrosine kinase linked to apoptosis and elevated in Alzheimer’s disease, also was neuroprotective. Remarkably, neurological dysfunction evoked by ADDLs occurred well in advance of cellular degeneration. Without lag, and despite retention of evoked action potentials, ADDLs inhibited hippocampal long-term potentiation, indicating an immediate impact on signal transduction. We hypothesize that impaired synaptic plasticity and associated memory dysfunction during early stage Alzheimer’s disease and severe cellular degeneration and dementia during end stage could be caused by the biphasic impact of Aβ-derived diffusible ligands acting upon particular neural signal transduction pathways.

3,443 citations


Journal ArticleDOI
TL;DR: Overactivated microglia can be detected using imaging techniques and therefore this knowledge offers an opportunity not only for early diagnosis but, importantly, for the development of targeted anti-inflammatory therapies that might slow or halt the progression of neurodegenerative disease.
Abstract: Mounting evidence indicates that microglial activation contributes to neuronal damage in neurodegenerative diseases. Recent studies show that in response to certain environmental toxins and endogenous proteins, microglia can enter an overactivated state and release reactive oxygen species (ROS) that cause neurotoxicity. Pattern recognition receptors expressed on the microglial surface seem to be one of the primary, common pathways by which diverse toxin signals are transduced into ROS production. Overactivated microglia can be detected using imaging techniques and therefore this knowledge offers an opportunity not only for early diagnosis but, importantly, for the development of targeted anti-inflammatory therapies that might slow or halt the progression of neurodegenerative disease.

3,130 citations


Journal ArticleDOI
TL;DR: The nature of antioxidants is discussed, it being suggested that antioxidant enzymes and chelators of transition metal ions may be more generally useful protective agents than chain‐breaking antioxidants.
Abstract: Radicals are species containing one or more unpaired electrons. The oxygen radical superoxide (O 2 - ) and the non-radical oxidants hydrogen peroxide (H2O2) and hypochlorous acid (HOCl) are produced during normal metabolism and perform several useful functions. Excessive production of O 2 - and H2O2 can result in tissue damage, which often involves generation of highly reactive hydroxy 1 radical (· OH) and other oxidants in the presence of “catalytic” iron or copper ions. A major form of antioxidant defence is the storage and transport of iron or copper ions in forms that will not catalyze formation of reactive radicals. Tissue injury, e. g., by ischaemia or trauma, can cause increased iron availability and accelerate free radical reactions. This may be especially important in the brain, since areas of this organ are rich in iron and cerebrospinal fluid cannot bind released iron ions. Oxidative stress upon nervous tissue can produce damage by several interacting mechanisms, including rises in intracellular free Ca2+ and, possibly, release of excitatory amino acids. Recent suggestions that free radical reactions are involved in the neurotoxicity of aluminium and in damage to the substantia nigra in Parkinson’s disease are reviewed. Finally, the nature of antioxidants is discussed, with a suggestion that antioxidant enzymes and chelators of iron ions may be more generally useful protective agents than chain-breaking antioxidants. Careful precautions must be taken in the design of antioxidants for therapeutic use.

2,882 citations


Journal ArticleDOI
12 Aug 1993-Nature
TL;DR: It is reported that NO.-mediated neurotoxicity is engendered, at least in part, by reaction with superoxide anion (O.-2), apparently leading to formation of peroxynitrite (ONOO−), and not by NO.
Abstract: Congeners of nitrogen monoxide (NO) are neuroprotective and neurodestructive. To address this apparent paradox, we considered the effects on neurons of compounds characterized by alternative redox states of NO: nitric oxide (NO.) and nitrosonium ion (NO+). Nitric oxide, generated from NO. donors or synthesized endogenously after NMDA (N-methyl-D-aspartate) receptor activation, can lead to neurotoxicity. Here, we report that NO.- mediated neurotoxicity is engendered, at least in part, by reaction with superoxide anion (O2.-), apparently leading to formation of peroxynitrite (ONOO-), and not by NO. alone. In contrast, the neuroprotective effects of NO result from downregulation of NMDA-receptor activity by reaction with thiol group(s) of the receptor's redox modulatory site. This reaction is not mediated by NO. itself, but occurs under conditions supporting S-nitrosylation of NMDA receptor thiol (reaction or transfer of NO+). Moreover, the redox versatility of NO allows for its interconversion from neuroprotective to neurotoxic species by a change in the ambient redox milieu. The details of this complex redox chemistry of NO may provide a mechanism for harnessing neuroprotective effects and avoiding neurotoxicity in the central nervous system.

2,434 citations


Network Information
Related Topics (5)
Neuroprotection

32.5K papers, 1.4M citations

90% related
SH-SY5Y

1.7K papers, 44.9K citations

90% related
Glutamate receptor

33.5K papers, 1.8M citations

90% related
MPTP

6.1K papers, 320K citations

89% related
Acetylcholinesterase

7.8K papers, 269.4K citations

89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202221
2021730
2020676
2019637
2018632
2017621

Top Attributes

Show by:

Topic's top 5 most impactful authors

Michael Aschner

132 papers, 6.6K citations

Syed F. Ali

76 papers, 4.7K citations

Akinori Akaike

57 papers, 3.3K citations

Jau-Shyong Hong

48 papers, 5.7K citations

Dennis W. Choi

39 papers, 16.3K citations