scispace - formally typeset
Search or ask a question
Topic

Neurotransmitter

About: Neurotransmitter is a research topic. Over the lifetime, 12587 publications have been published within this topic receiving 682657 citations. The topic is also known as: neurotransmitters.


Papers
More filters
Journal ArticleDOI
15 Feb 1996-Nature
TL;DR: In homozygote mice, dopamine persists at least 100 times longer in the extracellular space, explaining the biochemical basis of the hyperdopaminergic phenotype and demonstrating the critical role of the transporter in regulating neurotransmission.
Abstract: Disruption of the mouse dopamine transporter gene results in spontaneous hyperlocomotion despite major adaptive changes, such as decreases in neurotransmitter and receptor levels. In homozygote mice, dopamine persists at least 100 times longer in the extracellular space, explaining the biochemical basis of the hyperdopaminergic phenotype and demonstrating the critical role of the transporter in regulating neurotransmission. The dopamine transporter is an obligatory target of cocaine and amphetamine, as these psychostimulants have no effect on locomotor activity or dopamine release and uptake in mice lacking the transporter.

2,439 citations

Journal ArticleDOI
TL;DR: In this paper, it was shown that NO is produced enzymatically in postsynaptic structures in response to activation of excitatory amino acid receptors and diffuses out to act on neighbouring cellular elements, probably presynaptic nerve endings and astrocyte processes.

2,328 citations

Journal ArticleDOI
TL;DR: Mood, emotion, cognition, and motor functions as well as circadian and neuroendocrine rhythms, including food intake, sleep, and reproductive activity, are modulated by the midbrain raphe serotonin (5‐HT) system and allele‐dependent differential 5‐HTT promoter activity may play a role in the expression and modulation of complex traits and behavior.
Abstract: Mood, emotion, cognition, and motor functions as well as circadian and neuroendocrine rhythms, including food intake, sleep, and reproductive activity, are modulated by the midbrain raphe serotonin (5-HT) system. By directing the magnitude and duration of postsynaptic responses, carrier-facilitated 5-HT transport into and release from the presynaptic neuron are essential for the fine tuning of serotonergic neurotransmission. Interest in the mechanism of environmental factor-, disease-, and therapy-induced modification of 5-HT transporter (5-HTT) function and its impact on early brain development, event-related synaptic plasticity, and neurodegeneration is widespread and intensifying. We have recently characterized the human and murine 5-HTT genes and performed functional analyses of their 5'-flanking regulatory regions. A tandemly repeated sequence associated with the transcriptional apparatus of the human 5-HTT gene displays a complex secondary structure, represses promoter activity in nonserotonergic neuronal cells, and contains positive regulatory components. We now report a novel polymorphism of this repetitive element and provide evidence for allele-dependent differential 5-HTT promoter activity. Allelic variation in 5-HTT-related functions may play a role in the expression and modulation of complex traits and behavior.

2,202 citations

Journal ArticleDOI
TL;DR: This review considers the distinct roles of synaptic and extrasynaptic GABA receptor subtypes in the control of neuronal excitability in the adult mammalian brain.
Abstract: The proper functioning of the adult mammalian brain relies on the orchestrated regulation of neural activity by a diverse population of GABA (gamma-aminobutyric acid)-releasing neurons. Until recently, our appreciation of GABA-mediated inhibition focused predominantly on the GABA(A) (GABA type A) receptors located at synaptic contacts, which are activated in a transient or 'phasic' manner by GABA that is released from synaptic vesicles. However, there is growing evidence that low concentrations of ambient GABA can persistently activate certain subtypes of GABA(A) receptor, which are often remote from synapses, to generate a 'tonic' conductance. In this review, we consider the distinct roles of synaptic and extrasynaptic GABA receptor subtypes in the control of neuronal excitability.

1,994 citations

Journal ArticleDOI
TL;DR: This chapter discusses the gamma-aminobutyric acid (GABA) receptor channels, which are the most abundant inhibitory neurotransmitter in the CNS.
Abstract: This chapter discusses the gamma-aminobutyric acid (GABA) receptor channels, which are the most abundant inhibitory neurotransmitter in the CNS. Following release from presynaptic vesicles, GABA exerts fast inhibitory effects by interacting with GABA receptors, whose primary function is to hyperpolarize neuronal membranes in mature CNS neurons. GABA receptors are found both presynaptically, where they decrease the likelihood of neurotransmitter release, and postsynaptically, where they decrease the likelihood of neuronal firing. There are two types of GABA receptor, termed GABA A and GABA B receptors. GABA A receptors are fast-activating Clˉ channels from the Cys-loop family of ligand-gated ion channels. Activation of GABA A receptors causes membrane hyperpolarization by allowing Clˉ influx, reflecting the relatively low concentration of Clˉ found intracellularly in most adult CNS neurons. GABA A receptors can also mediate depolarizing responses in most immature CNS neurons and in mature peripheral neurons.

1,991 citations


Network Information
Related Topics (5)
Dopamine
45.7K papers, 2.2M citations
97% related
Glutamate receptor
33.5K papers, 1.8M citations
96% related
Hippocampus
34.9K papers, 1.9M citations
94% related
Hippocampal formation
30.6K papers, 1.7M citations
94% related
Agonist
53.7K papers, 1.9M citations
91% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023215
2022479
2021216
2020230
2019238
2018211