scispace - formally typeset
Search or ask a question
Topic

Neutrino detector

About: Neutrino detector is a research topic. Over the lifetime, 6638 publications have been published within this topic receiving 127792 citations. The topic is also known as: neutrino observatory.


Papers
More filters
Journal ArticleDOI
M. G. Aartsen1, Rasha Abbasi2, Y. Abdou3, Markus Ackermann, Jenni Adams4, Juanan Aguilar5, Markus Ahlers2, D. Altmann6, J. Auffenberg2, X. Bai, Michael J. Baker2, S. W. Barwick7, V. Baum8, R. C. Bay9, J. J. Beatty10, S. Bechet11, J. Becker Tjus12, K.-H. Becker13, M. L. Benabderrahmane, Segev BenZvi2, P. Berghaus, D. Berley14, Elisa Bernardini, A. Bernhard, D. Bertrand11, D. Z. Besson15, Gary Binder9, Gary Binder16, Daniel Bindig13, M. Bissok17, E. Blaufuss14, J. Blumenthal17, D. J. Boersma18, S. Bohaichuk19, C. Bohm20, D. Bose21, S. Böser22, Olga Botner18, L. Brayeur21, H.-P. Bretz, A. M. Brown4, R. Bruijn23, Jürgen Brunner, M. J. Carson3, J. Casey24, M. Casier21, Dmitry Chirkin2, A. Christov5, B. Christy14, K. Clark25, F. Clevermann26, S. Coenders17, Seth M. Cohen23, D. F. Cowen25, A. H. Cruz Silva, M. Danninger20, J. Daughhetee24, J. C. Davis10, M. Day2, C. De Clercq21, S. De Ridder3, Paolo Desiati2, K. D. de Vries21, Tyce DeYoung25, Juan Carlos Diaz-Velez2, Matt Dunkman25, R. Eagan25, B. Eberhardt8, B. Eichmann12, J. Eisch2, R. W. Ellsworth14, S. Euler17, Paul Evenson, O. Fadiran2, A. R. Fazely27, Anatoli Fedynitch12, J. Feintzeig2, T. Feusels3, Kirill Filimonov9, Chad Finley20, T. Fischer-Wasels13, S. Flis20, A. Franckowiak22, K. Frantzen26, T. Fuchs26, Thomas K. Gaisser, J. C. Gallagher2, L. Gerhardt16, L. Gerhardt9, L. Gladstone2, Thorsten Glusenkamp, A. Goldschmidt16, G. Golup21, J. G. Gonzalez, J. A. Goodman14, Dariusz Gora, Dylan T. Grandmont19 
20 Nov 2013-Science
TL;DR: The presence of a high-energy neutrino flux containing the most energetic neutrinos ever observed is revealed, including 28 events at energies between 30 and 1200 TeV, although the origin of this flux is unknown and the findings are consistent with expectations for a neutRino population with origins outside the solar system.
Abstract: We report on results of an all-sky search for high-energy neutrino events interacting within the IceCube neutrino detector conducted between May 2010 and May 2012. The search follows up on the previous detection of two PeV neutrino events, with improved sensitivity and extended energy coverage down to about 30 TeV. Twenty-six additional events were observed, substantially more than expected from atmospheric backgrounds. Combined, both searches reject a purely atmospheric origin for the 28 events at the 4 sigma level. These 28 events, which include the highest energy neutrinos ever observed, have flavors, directions, and energies inconsistent with those expected from the atmospheric muon and neutrino backgrounds. These properties are, however, consistent with generic predictions for an additional component of extraterrestrial origin.

1,490 citations

Journal ArticleDOI
TL;DR: A burst of eight neutrino events preceding the optical detection of the supernova in the Large Magellanic cloud has been observed in a large underground water Cherenkov detector.
Abstract: A burst of eight neutrino events a preceding the optical detection of the supernova in the Large Magellanic Cloud has been observed in a large underground water Cherenkov detector. The events span an interval of 6 s and have visible energies in the range 20-40 MeV.

1,369 citations

Journal ArticleDOI
M. G. Aartsen1, Markus Ackermann, Jenni Adams2, Juanan Aguilar3  +299 moreInstitutions (41)
TL;DR: Results from an analysis with a third year of data from the complete IceCube detector are consistent with the previously reported astrophysical flux in the 100 TeV-PeV range at the level of 10(-8) GeV cm-2 s-1 sr-1 per flavor and reject a purely atmospheric explanation for the combined three-year data at 5.7σ.
Abstract: A search for high-energy neutrinos interacting within the IceCube detector between 2010 and 2012 provided the first evidence for a high-energy neutrino flux of extraterrestrial origin. Results from an analysis using the same methods with a third year (2012-2013) of data from the complete IceCube detector are consistent with the previously reported astrophysical flux in the 100 TeV-PeV range at the level of 10(-8) GeV cm(-2) s(-1) sr(-1) per flavor and reject a purely atmospheric explanation for the combined three-year data at 5.7 sigma. The data are consistent with expectations for equal fluxes of all three neutrino flavors and with isotropic arrival directions, suggesting either numerous or spatially extended sources. The three-year data set, with a live time of 988 days, contains a total of 37 neutrino candidate events with deposited energies ranging from 30 to 2000 TeV. The 2000-TeV event is the highest-energy neutrino interaction ever observed.

1,183 citations

Journal ArticleDOI
TL;DR: In this article, the authors present new results based on the entire CHOOZ (The CHooZ experiment is named after the new nuclear power station operated by Electricite de France (EdF) near the village of Chooz in the Ardennes region of France) data sample.

1,146 citations

Journal ArticleDOI
TL;DR: The regions of the (m(S),lambda(S)) parameter space which can be probed by present and future experiments designed to detect scattering of S dark matter particles from Ge nuclei, and to observe upward-moving muons and contained events in neutrino detectors due to high-energy neutrinos from annihilations of Sdark matter particles in the Sun and the Earth, are discussed.
Abstract: We consider a very simple extension of the standard model in which one or more gauge singlet scalars S-i couples to the standard model via an interaction of the form lambda(S)S(i)(dagger)S(i)H(dagger)H, where H is the standard model Higgs doublet. The thermal relic density of S scalars is calculated as a function of the coupling lambda(S) and the S scalar mass ms. The regions of the (m(S),lambda(S)) parameter space which can be probed by present and future experiments designed to detect scattering of S dark matter particles from Ge nuclei, and to observe upward-moving muons and contained events in neutrino detectors due to high-energy neutrinos from annihilations of S dark matter particles in the Sun and the Earth, are discussed. Present experimental bounds place only very weak constraints on the possibility of thermal relic S scalar dark matter. The next generation of cryogenic Ge detectors and of large area (10(4) m(2)) neutrino detectors will be able to investigate most of the parameter space corresponding to thermal relic S scalar dark matter up to m(S) approximate to 50 GeV, while a 1 km(2) detector would in general be able to detect thermal relic S scalar dark matter up to m(S) approximate to 100 GeV and would be able to detect up to m(S) approximate to 500 GeV or more if the Higgs boson is lighter than 100 GeV.

1,025 citations


Network Information
Related Topics (5)
Neutrino
45.9K papers, 1M citations
95% related
Dark matter
41.5K papers, 1.5M citations
92% related
Quark
43.3K papers, 951K citations
90% related
Quantum chromodynamics
47.1K papers, 1.2M citations
88% related
Higgs boson
33.6K papers, 961.7K citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023103
2022267
2021177
2020175
2019208
2018170