scispace - formally typeset
Search or ask a question

Showing papers on "Newcastle disease published in 2015"


Journal ArticleDOI
TL;DR: The co-evolution of at least three different sub-genotypes reported here and the apparent close relationship of some of those genotypes from ND viruses isolated from wild birds, suggests that identifying wild life reservoirs may help predict new panzootics.

161 citations


Journal ArticleDOI
TL;DR: One year after a virulent Newcastle disease virus (vNDV) outbreak in Pakistan, the causative strain was present in vaccinated chickens of multiple farms despite the existence of high-average NDV-specific antibody titers (>4.75 log2).
Abstract: One year after a virulent Newcastle disease virus (vNDV) outbreak in Pakistan, the causative strain was present in vaccinated chickens of multiple farms despite the existence of high-average NDV-specific antibody titers (>4.75 log2). The data suggest a possible role of vaccinated birds as reservoirs of vNDV.

59 citations


Journal ArticleDOI
TL;DR: The protection efficacy of the recombinant genotype VII NDV inactivated vaccine was evaluated when added to an existing commercial vaccination program against challenge with velogenic NDV IBS002 and NDV AF2240-I in commercial broilers and indicated that both LaSota and recombinant Genotype VII vaccines offered full protection against challenge.
Abstract: A Newcastle disease virus (NDV) isolate designated IBS002 was isolated from a commercial broiler farm in Malaysia The virus was characterised as a virulent strain based on the multiple basic amino acid motif of the fusion (F) cleavage site (112)RRRKGF(117) and length of the C-terminus extension of the hemagglutinin-neuraminidase (HN) gene Furthermore, IBS002 was classified as a velogenic NDV with mean death time (MDT) of 512 h and intracerebral pathogenicity index (ICPI) of 176 A genetic distance analysis based on the full-length F and HN genes showed that both velogenic viruses used in this study, genotype VII NDV isolate IBS002 and genotype VIII NDV isolate AF2240-I, had high genetic variations with genotype II LaSota vaccine In this study, the protection efficacy of the recombinant genotype VII NDV inactivated vaccine was also evaluated when added to an existing commercial vaccination program against challenge with velogenic NDV IBS002 and NDV AF2240-I in commercial broilers The results indicated that both LaSota and recombinant genotype VII vaccines offered full protection against challenge with AF2240-I However, the LaSota vaccine only conferred partial protection against IBS002 In addition, significantly reduced viral shedding was observed in the recombinant genotype VII-vaccinated chickens compared to LaSota-vaccinated chickens

59 citations


Journal ArticleDOI
TL;DR: Under experimental conditions, QV4 and LaSota NDV vaccine strains successfully protected chickens from morbidity and mortality against the genotype VII and one genotype XVII NDV strain, with no significant differences in the amount of virus shed when 2 vaccine schemes were compared.
Abstract: To characterize the clinicopathologic features of recently described genotypes of Newcastle disease virus (NDV), 1 representative strain of genotype XIV and 2 of genotype XVII, all isolated from West Africa, were used to infect groups of ten 4-week-old specific pathogen-free chickens. The pathobiology of these 3 strains was compared to a South African NDV strain classified within genotype VII. All chickens infected with the 4 viruses died or were euthanized by day 4 postinfection due to the severity of clinical signs. Gross and histologic lesions in all infected chickens included extensive necrosis of lymphoid tissues (thymus, spleen, bursa of Fabricius, cecal tonsils, gut-associated lymphoid tissue), gastrointestinal necrosis and hemorrhages, and severe hemorrhagic conjunctivitis. Immunohistochemical staining revealed systemic viral distribution, and the most intense staining was in the lymphoid organs. Results demonstrate that the 3 West African strains from the previously uncharacterized genotypes XIV and XVII are typical velogenic viscerotropic NDV strains with lesions similar to the South African strain. Under experimental conditions, QV4 and LaSota NDV vaccine strains successfully protected chickens from morbidity and mortality against the genotype VII and one genotype XVII NDV strain, with no significant differences in the amount of virus shed when 2 vaccine schemes were compared.

56 citations


Journal ArticleDOI
TL;DR: It is shown that Newcastle disease virus-vectored H7 (NDV-H7) and NDV- H5 vaccines are able to induce antibodies with high hemagglutination inhibition (HI) titers and completely protect chickens from challenge with the novel H7N9 or highly pathogenic H5N1 viruses, respectively.
Abstract: Sporadic human infections by a novel H7N9 virus occurred over a large geographic region in China In this study, we show that Newcastle disease virus (NDV)-vectored H7 (NDV-H7) and NDV-H5 vaccines are able to induce antibodies with high hemagglutination inhibition (HI) titers and completely protect chickens from challenge with the novel H7N9 or highly pathogenic H5N1 viruses, respectively Notably, a baculovirus-expressed H7 protein failed to protect chickens from H7N9 virus infection

51 citations


Journal ArticleDOI
TL;DR: It was concluded that heat stress immunomodulated the immune function response of the chickens to the NC disease vaccine challenge and shifted the immune cell profile from B-lymphocyte to T-cytotoxic and T-helper lymphocyte profile, and this immune cell pattern persisted until the end of the study period.

45 citations


Journal ArticleDOI
TL;DR: The results indicate that the severe pathology in immune organs caused by genotype VIId NDV strains is associated with high levels of virus replication and an intense inflammatory response.
Abstract: Some strains of Newcastle disease virus (NDV) genotype VIId cause more-severe tissue damage in lymphoid organs compared to other virulent strains. In this study, we aim to define the mechanism of this distinct pathological manifestation of genotype VII viruses. Pathology, virus replication, and the innate immune response in lymphoid tissues of chickens infected with two genotype VIId NDV strains (JS5/05 and JS3/05), genotype IX NDV F48E8 and genotype IV NDV Herts/33, were compared. Histopathologic examination showed that JS5/05 and JS3/05 produced more-severe lesions in the spleen and thymus, but these four virulent strains caused comparable mild lesions in the bursa. In addition, JS3/05 and JS5/05 replicated at significantly higher levels in the lymphatic organs than F48E8 and Herts/33. A microarray assay performed on the spleens of chickens infected with JS5/05 or Herts/33 revealed that JS5/05 elicited a more potent inflammatory response by increasing the number and expression levels of activated genes. Moreover, cytokine gene expression profiling showed that JS5/05 and JS3/05 induced a stronger cytokine response in lymphoid tissues compared to F48E8 and Herts/33. Taken together, our results indicate that the severe pathology in immune organs caused by genotype VIId NDV strains is associated with high levels of virus replication and an intense inflammatory response.

42 citations


Journal ArticleDOI
TL;DR: Results showed that injection of Cy significantly suppressed immunity in chickens; oral administration of GSLS before immunization recovered splenocyte proliferation induced by ConA and LPS, and the numbers of IgA+ cells and iIELs as well as the specific antibody response to a bivalent inactive vaccine of ND and AI in immunosuppressed chickens.

39 citations


Journal ArticleDOI
TL;DR: The data suggested that the rTS09-C virus could be used as a vaccine vector to develop bivalent thermostable vaccines against Newcastle disease and the target avian diseases for village chickens, especially in the developing and least-developed countries.
Abstract: Thermostable Newcastle disease virus (NDV) vaccines have been used widely to control Newcastle disease for village poultry flocks, due to their independence of cold chains for delivery and storage. To explore the potential use of thermostable NDV as a vaccine vector, an infectious clone of thermostable avirulent NDV strain TS09-C was developed using reverse genetics technology. The GFP gene, along with the self-cleaving 2A gene of foot-and-mouth disease virus and ubiquitin monomer (2AUbi), were inserted immediately upstream of the NP (nucleocapsid protein), M (matrix protein) or L (large polymerase protein) gene translation start codon in the TS09-C infectious clone. Detection of GFP expression in the recombinant virus-infected cells showed that the recombinant virus, rTS-GFP/M, with the GFP gene inserted into the M gene expressed the highest level of GFP. The rTS-GFP/M virus retained the same thermostability, growth dynamics and pathogenicity as its parental rTS09-C virus. Vaccination of specific-pathogen-free chickens with the rTS-GFP/M virus conferred complete protection against virulent NDV challenge. Taken together, the data suggested that the rTS09-C virus could be used as a vaccine vector to develop bivalent thermostable vaccines against Newcastle disease and the target avian diseases for village chickens, especially in the developing and least-developed countries.

37 citations


Journal ArticleDOI
TL;DR: The mutant virus, aSG10, can be safely used as a vaccine vector and is a potential vaccine candidate in increasing the protective efficacy for the control of current ND epidemic in China.
Abstract: To investigate whether the differences between the circulating Newcastle disease virus (NDV) isolates and the used vaccine might account for the current ND outbreaks in vaccinated poultry flocks. A reverse genetics system using prevalent genotype VIId isolate SG10 was constructed and a mutant virus, named aSG10, was developed by changing the virulent F protein cleavage site motif “112RRQKR↓F117” into an avirulent motif “112GRQGR↓L117”. The attenuated pathogenicity of aSG10 was confirmed from the mean death time and intracerebral pathogenicity index. aSG10 and LaSota both protected vaccinated birds from death after challenge with highly virulent genotype VII NDV, strain SG10. However, aSG10 significantly reduced the challenge virus shedding from the vaccinated birds compared to LaSota vaccine. We also generated a recombinant virus, aSG10–enhanced green fluorescent protein (EGFP), which expresses EGFP. aSG10-EGFP stably expressed EGFP for at least 10 passages. The mutant, aSG10, can be safely used as a vaccine vector and is a potential vaccine candidate in increasing the protective efficacy for the control of current ND epidemic in China.

36 citations


Journal ArticleDOI
26 Aug 2015-Vaccine
TL;DR: The study demonstrated the adjuvant potential of R-848 when co-administered with inactivated NDV vaccine in SPF chicken which is likely due to the up-regulation of immune response genes.

Journal ArticleDOI
TL;DR: Domestic ducks can become co-infected with vNDV and LPAIV with no effect on clinical signs but with reduction of virus shedding and transmission, indicating that infection with one virus can interfere with replication of another, modifying the pathogenesis and transmission of the viruses.

Journal ArticleDOI
TL;DR: Comparisons of viral distribution and mRNA expression of immune-related genes in ducks following infection with two NDV strains highlight important differences in host innate immune responses, courses of infection, and pathogenesis following NDV infection.
Abstract: Though previous studies have identified two strains of duck-origin Newcastle disease virus (NDV) with varying levels of pathogenicity, the relationship between the early-phase host innate immune response, and pathogenesis of ducks infected with these strains in the lungs and thymuses remains unclear. In this study, we compared the viral distribution and mRNA expression of immune-related genes in ducks following infection with two NDV strains, Duck/CH/GD/SS/10 (SS-10) and Duck/CH/GD/NH/10 (NH-10). Both NDV strains replicated systemically in tested tissues (i.e., small intestine, cecal tonsils, brain, lung, bursa of Fabricius, thymus, and spleen) and exhibited different biological properties in duck pathogenicity. Real-time quantitative polymerase chain reaction showed that the expression of TLR3, TLR7, RIG-I, MDA5, IL-1β, IL-2, IL-6, IL-8, IFN-alpha, IFN-beta, IFN-gamma in the lungs was significantly greater than in the respective thymus genes during the early post infection stage. However, in the lungs, the expression of TLR3, TLR7, IL-1β, IL-2, IL-8, IFN-alpha, IFN-gamma, and MHC II induced by SS-10 at 72 h post-inoculation (hpi) was less than with NH-10. Furthermore, the expression of IL-6 and IFN-beta in the lungs and thymuses following infection with SS-10 was greater than that with NH-10 at 24 and 48 hpi. These results highlight important differences in host innate immune responses, courses of infection, and pathogenesis following NDV infection. Further studies should work to expand understandings of the molecular mechanisms related to NDV infection.

Journal ArticleDOI
TL;DR: This study revealed the presence of a velogenic APMV-1 genotype and of two influenza subtypes, namely HPAI H5N1 and H9N2, which are of major interest for public and animal health.
Abstract: On March 2013, the Libyan poultry industry faced severe outbreaks due to mixed infections of APMV-1 (Newcastle disease) and low pathogenic avian influenza (AI) of the H9N2 subtype which were causing high mortality and great economic losses. APMV-1 and H9N2 were isolated and characterized. Genetic sequencing of the APMV-1/chicken/Libya/13VIR/ 7225-1/2013 isolate revealed the presence of a velogenic APMV-1 belonging to lineage 5 (GRRRQKR*F Lin.5) or genotype VII in class II, according to the nomenclature in use. Three AI viruses of the H9N2 subtype, namely A/avian/Libya/13VIR7225-2/2013, A/avian/Libya/13VIR7225-3/2013, and A/avian/Libya/13VIR7225-5/2013, were isolated and found to belong to the G1 lineage. Analysis of amino acid sequences showed that the analyzed H9N2 viruses contained the amino acid Leu at position 226 (H3 numbering) at the receptor binding site of the HA, responsible for human virus-like receptor specificity. On March 2014, an outbreak of highly pathogenic avian influenza (HPAI) virus of the H5N1 subtype was diagnosed in a backyard poultry farm in an eastern region of Libya. The H5N1 isolate (A/chicken/Libya/14VIR2749-16/2014) was detected by real time RT-PCR (rRT-PCR). Genetic characterization of the HA gene revealed that the identified subtype was highly pathogenic, belonged to the 2.2.1 lineage, and clustered with recent Egyptian viruses. This study revealed the presence of a velogenic APMV-1 genotype and of two influenza subtypes, namely HPAI H5N1 and H9N2, which are of major interest for public and animal health. Considering these findings, more investigations must be undertaken to establish and implement adequate influenza surveillance programs; this would allow better study of the epidemiology of APMV-1 genotype VII in Libya and evaluation of the current vaccination strategies.

Journal ArticleDOI
TL;DR: A reverse genetics system for highly virulent NDV isolated from goose flocks was developed independent of conventional T7 RNA polymerase, and will provide a powerful tool for the analysis of goose-origin NDV dissemination and pathogenesis, as well as preparation for genotype-matched NDV attenuated vaccines.
Abstract: Newcastle disease virus (NDV) has only a single serotype but diversified genotypes Genotype VII strains are the prevalent currently circulating genotype worldwide, and in particular, these strains cause outbreaks in waterfowl In this study, a reverse genetics system for highly virulent NDV isolated from goose flocks was developed independent of conventional T7 RNA polymerase Infectious virus was successfully generated by an RNA polymerase II promoter to drive transcription of the full-length virus antigenome A green fluorescent protein (GFP)-expressing virus was generated by inserting an additional transcription cassette coding for the enhanced GFP between the P and M genes of the genome The expression of GFP was confirmed by western blotting and fluorescence microscopy The replication kinetics and pathogenicity of the recombinant viruses are indistinguishable from the parental wild-type virus This reverse genetics system will provide a powerful tool for the analysis of goose-origin NDV dissemination and pathogenesis, as well as preparation for genotype-matched NDV attenuated vaccines

Journal ArticleDOI
15 May 2015-Vaccine
TL;DR: Rec recombinant lentogenic Newcastle disease virus (NDV) LaSota expressing either envelope glycoproyein, heamagglutinine (H) or fusion protein (F) is generated, named as rLa-CDVH and rLa, suggesting that recombinant NDV expressing CDV H is safe and efficient candidate vaccine against CDV in mink, and maybe other host species.

Journal ArticleDOI
TL;DR: The results suggested that the co-infection of ALV-J and REV caused more serious synergistic pathogenic effects, growth retardation, immunosuppression, and secondary E. coli infection in broiler chickens.
Abstract: To study interactions between avian leukosis virus subgroup J (ALV-J) and reticuloendotheliosis virus (REV) and the effects of co-infection on pathogenicity of these viruses, 1-day-old broiler chicks were infected with ALV-J, REV or both ALV-J and REV. The results indicated that co-infection of ALV-J and REV induced more growth retardation and higher mortality rate than ALV-J or REV single infection (P < 0.05). Chickens co-infected with ALV-J and REV also showed more severe immunosuppression than those with a single infection. This was manifested by significantly lower bursa of Fabricius and thymus to body weight ratios and lower antibody responses to Newcastle disease virus and H9-avian influenza virus (P < 0.05). Perihepatitis and pericarditis related to severe infection with Escherichia coli were found in many of the dead birds. E. coli was isolated from each case of perihepatitis and pericarditis. The mortality associated with E. coli infection in the co-infection groups was significantly higher than in the other groups (P < 0.05). Among 516 tested E. coli isolates from 58 dead birds, 12 serotypes of the O-antigen were identified in two experiments. Different serotypes of E. coli strains were even isolated from the same organ of the same bird. Diversification of O-serotypes suggested that perihepatitis and pericarditis associated with E. coli infection was the most frequent secondary infection following the immunosuppression induced by ALV-J and REV co-infection. These results suggested that the co-infection of ALV-J and REV caused more serious synergistic pathogenic effects, growth retardation, immunosuppression, and secondary E. coli infection in broiler chickens.

Journal ArticleDOI
TL;DR: The results demonstrated the possibility to take use of DCpep as an immune adjuvant in the design of NDV vaccine.

Journal ArticleDOI
TL;DR: The study indicated that presently available live and attenuated vaccines which include Genotype-II NDV have failed in protecting the flocks against Genotypes-XIII and resulted in outbreaks with mortality above 50%.
Abstract: Aim The present research work was carried out to study the patho-epidemiological aspects of Genotype-XIII Newcastle disease virus (NDV) infection in commercial layer in and around Anand, Gujarat. As the outbreaks have reported in vaccinated flocks, it was felt necessary to study the disease with respect to its changing pathogenicity and relevant aspects. Materials and methods The study comprised of patho-epidemiology of Newcastle disease (ND) by information collected from different layer farms suffering from the disease in relation to incidence pattern and mortality, duration of mortality, susceptible age, and loss due to production performance. Clinical signs were recorded based on observations. During post-mortem, gross lesions were also recorded. For histopathological examination visceral organs according to lesions were collected in 10% formalin and processed slide stained by hematoxylin and eosin for microscopic examination. Cultivation of virus was done in embryonated specific pathogen-free (SPF) eggs of 9-11 days and isolation of virus was done for haemagglutination (HA) and haemagglutination inhibition (HI) test and to identify pathotype of virus by intracerebral pathogenicity index (ICPI) test to determine the virulence of virus. The Genotype-XIII NDV was confirmed by F gene sequence and whole genome sequence. Results During the study mortality due to ND was recorded in 13 layer flocks in spite of routine vaccination, which usually contain Genotype-II strain of virus. The mortality was observed as high as above 50% with an average of 21.21%. The susceptible age for disease was found to be 6-14 weeks. The duration of mortality observed was 23 days. The disease resulted in a significant reduction in body weight, feed intake and drop in egg production. Majority of the outbreaks appeared during extremely hot months of April to June. Greenish diarrhoea was frequently seen in birds that survived early in infection. Mortality continued for 2-3 weeks and reduced with appearance of torticollis. Gross lesions were characterized by multifocal to diffuse hemorrhages around proventricular glands, necrotic (diphtheritic) haemorrhagic ulcers throughout the intestine, disseminated multiple foci of necrosis and pin-point hemorrhages in the spleen parenchyma. The microscopic lesions include focal to diffuse hemorrhages, diffuse infiltration of mononuclear cells, necrosis, and degeneration in visceral organs. All the 13 farm samples (n=13) resulted in death of all the embryos following incubation up to 72 h post-inoculation. All the 13 allantois fluids from field samples along with F and R2B vaccine sample were found positive for HA activity, which was further confirmed by HI using known NDV serum. The values of ICPI were 2.0 which were indicative of velogenic nature of the field NDV strain. Conclusion The study indicated that presently available live and attenuated vaccines which include Genotype-II NDV have failed in protecting the flocks against Genotype-XIII and resulted in outbreaks with mortality above 50%. ICPI score of 2.0 confirmed that the present outbreaks were due to Genotype-XIII NDV, which is velogenic in nature.

Journal ArticleDOI
TL;DR: Results suggest that though those NDV isolates were from duck, they still don't form a phylogenetic group because they came from the same species; however, they may play an important role in promoting the evolution of NDVs.

Journal ArticleDOI
TL;DR: Cellular and local immunity induced by administration of NDV, aMPV or IBV vaccines (individually or together) showed significant increase in CD4+, CD8+ and IgA bearing B-cells in the trachea compared to the unvaccinated group.

Journal ArticleDOI
TL;DR: Mixed species of Eimeria adversely affected the hematology and immune efficiency of broilers and inexpensive immune potentiators and hemotonics along with appropriate anti-coccidial medications are suggested to avoid the complications and subsequent economic losses.
Abstract: Background: Coccidiosis is an important parasitic disease of chickens, causing high mortality and morbidity. This morbidity is believed to be correlated with altered population dynamics of blood cells and immunocompromisation.Objectives: This study investigated the effects of mixed Eimeria species (viz., tenella, maxima, acervulina and necatrix) infection on hematology and immune responses following Newcastle disease (ND) and infectious bursal disease (IBD) booster vaccination in broilers.Animals and methods: One-day-old broiler chicks (Hubbard; n = 200) were divided into two equal groups A and B. On day 16, group A was infected orally with Eimeria species (7 × 104 sporulated oocysts), whereas group B served as control. Both groups were analyzed for hematological parameters on post-infection days 6–8. Sera from both groups were analyzed for antibody titers against ND and IBD vaccines. On day 8 post-infection, lymphoid organs were also examined.Results: Significantly lower (P < 0.05) levels of plasma prote...

Journal ArticleDOI
TL;DR: Findings reveal that recent Shannxi NDVstrains exhibit antigenic variations that could be responsible for recent outbreaks of NDVs in northwestern China.
Abstract: Newcastle disease (ND) is a devastating worldwide disease of poultry characterized by increased respiration, circulatory disturbances, hemorrhagic enteritis, and nervous signs. Sequence analysis shows several amino acid residue substitutions at neutralizing epitopes on the F and HN proteins of recent Shaanxi strains. Both Cross protection and cross serum neutralization tests revealed that the traditional vaccine strains were unable to provide full protection for the flocks. To better understand the epidemiology of Newcastle disease outbreak, a portion of the F gene and the full-length HN gene were amplified from Shaanxi isolates by reverse transcription-polymerase chain reaction (RT-PCR) and then conducted sequence and phylogenetic analyzes. In pathogenicity analysis, both high intra-cerebral pathogenicity index (ICPI) and mean death time (MDT) tests of chicken embryo were carried out. Furthermore, a cross-protection experiment in which specific-pathogen-free chickens vaccinated with a LaSota vaccine strain were challenged by the recent Shaanxi strain was also performed. Nine Newcastle disease (ND) virus (NDV) isolates which were recovered from ND outbreaks in chicken flocks in China were genotypically and pathotypically characterized. Amino acid sequence analysis revealed that all the recent Shaanxi-isolated NDVs have 112R-R-Q-K-R-F117 for the C-terminus of the F2 protein and exhibit high ICPI and MDT of chicken embryos, suggesting that they were all classified as velogenic type of NDVs. Phylogenetic analysis of these isolates showed that they belong to subgenotype VIId that have been implicated in the recent outbreaks in northwestern China. The percentage of amino acid sequence identity of F protein between recent Shaanxi stains and five vaccine strains was in the range of 81.9 %–88.1 %, while the percentage of amino acid sequence identity of HN protein between recent Shaanxi strains and vaccine strains was in the range of 87.4 %–91.2 %. Furthermore, a number of amino acid residue substitutions at neutralizing epitopes on the F and HN proteins of these isolates were observed, which may lead to the change of antibody recognition and neutralization capacity. A cross-protection experiment indicated that specific-pathogen-free chickens vaccinated with a LaSota vaccine strain was not capable of providing full protection for the flocks that were challenged by the recent Shaanxi strain. Taken together, our findings reveal that recent Shannxi NDVstrains exhibit antigenic variations that could be responsible for recent outbreaks of NDVs in northwestern China.

Journal ArticleDOI
TL;DR: Bioinformatics, GO annotation and pathway analysis indicated that five genes (Plexin B1, TRIM27, PDGFC, SETBP1 and USP7) may be important for the generation of protective antibodies against NDV and infectious bronchitis virus (IBV).
Abstract: Newcastle disease (ND) and avian infectious bronchitis (IB) are contagious diseases of chickens. To identify genes associated with antibody levels against ND and IB, a genome-wide association study was performed using specific-locus amplified fragment sequencing (SLAF-seq) technology in Jinghai yellow chickens. This determined six single-nucleotide polymorphisms (SNPs) that were associated with antibody levels against Newcastle disease virus (NDV): rsZ2494661, rsZ2494710, rs1211307701, rs1211307711, rs1218289310 and rs420701988. Of these, rsZ2494661 and rsZ2494710 reached the 5 % Bonferroni genome-wide significance level (5.5E-07) and they were both 134.7 kb downstream of the SETBP1 gene. The remaining four SNPs had 'suggestive' genome-wide significance levels (1.1E-05) and they were within or near the Plexin B1, LRRN1 and PDGFC genes. IB had two SNPs associated with antibody levels: rs149988433 and rs16170823; both reached chromosome-wide significance levels and they were near the USP7 and TRIM27 genes, respectively. Bioinformatics, GO annotation and pathway analysis indicated that five of these genes (Plexin B1, TRIM27, PDGFC, SETBP1 and USP7) may be important for the generation of protective antibodies against NDV and infectious bronchitis virus (IBV). This paves the way for further research on host immune responses against NDV.

Journal ArticleDOI
TL;DR: Assessing NDV and IBV prevalences in Ivory-Coast by molecular screening of >22,000 avian swabs by nested PCR and by serology testing of close to 2000 avian sera from 2010 through 2012 found 14.7% pooled swabs positive by PCR forNDV and 14.6% for IBV.

Journal ArticleDOI
TL;DR: Results indicate wild birds are at risk from infection and co-infection with H7, H5, and H9 subtypes, and investigation of wild bird infection might provide an early warning sign of potential novel AIVs circulating in the nearby poultry industry and even in human society.
Abstract: Extensive surveillance of influenza A viruses in different avian species is critical for understanding its transmission. Here, a breeding colony of Little Egrets and Black-crowned Night Herons was monitored both serologically and virologically in a city park of Jiangxi in 2009. A portion of herons had antibodies against H7 (52%), H5 (55%) and H9 (6%) subtype avian influenza virus (AIV) in egg yolk samples, and 45% had antibodies against different AIV serotypes (H5, H7 or H9) simultaneously. Greater numbers of samples with anti-AIV H5N1 recombination-4 (Re-4, clade 7) antibodies were measured compared with those containing anti-H5N1 Re-1 (clade 0) and Re-5 (clade 2.3.4) antibodies. Eight strains of H5 and 9 strains of H9 were isolated from poultry of nearby markets. These results indicate wild birds are at risk from infection and co-infection with H7, H5, and H9 subtypes. Investigation of wild bird infection might provide an early warning sign of potential novel AIVs circulating in the nearby poultry industry and even in human society.

Journal ArticleDOI
TL;DR: This is the first study demonstrating that recombinant NDV has the potential to serve as bivalent live vaccine against Goose parvovirus and Newcastle disease virus infection in birds.

Journal ArticleDOI
TL;DR: In this paper, a study was conducted to determine if co-infection with Newcastle disease virus (NDV) affects HPAIV replication in chickens, and the results showed that infection of chickens with virulent NDV strains can reduce the replication of the virus and increase mortality.
Abstract: Highly pathogenic avian influenza virus (HPAIV) and Newcastle disease virus (NDV) are two of the most important viruses affecting poultry worldwide and produce co-infections especially in areas of the world where both viruses are endemic; but little is known about the interactions between these two viruses. The objective of this study was to determine if co-infection with NDV affects HPAIV replication in chickens. Only infections with virulent NDV strains (mesogenic Pigeon/1984 or velogenic CA/2002), and not a lentogenic NDV strain (LaSota), interfered with the replication of HPAIV A/chicken/Queretaro/14588-19/95 (H5N2) when the H5N2 was given at a high dose (106.9 EID50) two days after the NDV inoculation, but despite this interference, mortality was still observed. However, chickens infected with the less virulent mesogenic NDV Pigeon/1984 strain three days prior to being infected with a lower dose (105.3–5.5 EID50) of the same or a different HPAIV, A/chicken/Jalisco/CPA-12283-12/2012 (H7N3), had reduced HPAIV replication and increased survival rates. In conclusion, previous infection of chickens with virulent NDV strains can reduce HPAIV replication, and consequently disease and mortality. This interference depends on the titer of the viruses used, the virulence of the NDV, and the timing of the infections. The information obtained from these studies helps to understand the possible interactions and outcomes of infection (disease and virus shedding) when HPAIV and NDV co-infect chickens in the field.

Journal ArticleDOI
TL;DR: It is demonstrated that eight or nine out of ten backyard poultry flocks in Oman are exposed to AI and ND viruses, and may present a risk for infection for the commercial poultry sector in Oman, or wild birds which could carry infection further afield.

Journal ArticleDOI
05 May 2015-PLOS ONE
TL;DR: It is revealed that total aqueous extract preparation of KIOM-C stimulates an antiviral state in murine macrophage cells and in mice leading to inhibition of viral infection and protection against lethal challenges.
Abstract: In order to identify new potential antiviral agents, recent studies have advocated thorough testing of herbal medicines or natural substances that are traditionally used to prevent viral infections. Antiviral activities and the mechanism of action of the total aqueous extract preparation of KIOM-C, a novel herbal medicine, against diverse types of viruses were investigated. In vitro antiviral activity against A/Puerto Rico/8/34 (H1N1) (PR8), vesicular stomatitis virus (VSV), and Newcastle disease virus (NDV) through the induction of type-I interferon related protein phosphorylation and up-regulation of pro-inflammatory cytokines in murine macrophage cells (RAW264.7) were determined. In vivo, KIOM-C-treated BALB/c mice showed higher survivability and lower lung viral titers when challenged with A/Aquatic bird/Korea/W81/2005 (H5N2), A/PR/8/34(H1N1), A/Aquatic bird/Korea/W44/2005(H7N3) or A/Chicken/Korea/116 /2004(H9N2) influenza subtypes in contrast with the non-treated group. The present study revealed that total aqueous extract preparation of KIOM-C stimulates an antiviral state in murine macrophage cells and in mice leading to inhibition of viral infection and protection against lethal challenges.