scispace - formally typeset
Search or ask a question
Topic

Nickel

About: Nickel is a research topic. Over the lifetime, 79308 publications have been published within this topic receiving 1210058 citations. The topic is also known as: Ni & element 28.


Papers
More filters
Journal ArticleDOI
TL;DR: This review article summarizes the last few decades of research on nickel hydroxide, an important material in physics and chemistry, that has many applications in engineering including, significantly, batteries.
Abstract: This review article summarizes the last few decades of research on nickel hydroxide, an important material in physics and chemistry, that has many applications in engineering including, significantly, batteries. First, the structures of the two known polymorphs, denoted as α-Ni(OH)2 and β-Ni(OH)2, are described. The various types of disorder, which are frequently present in nickel hydroxide materials, are discussed including hydration, stacking fault disorder, mechanical stresses and the incorporation of ionic impurities. Several related materials are discussed, including intercalated α-derivatives and basic nickel salts. Next, a number of methods to prepare, or synthesize, nickel hydroxides are summarized, including chemical precipitation, electrochemical precipitation, sol-gel synthesis, chemical ageing, hydrothermal and solvothermal synthesis, electrochemical oxidation, microwave-assisted synthesis, and sonochemical methods. Finally, the known physical properties of the nickel hydroxides are reviewed, including their magnetic, vibrational, optical, electrical and mechanical properties. The last section in this paper is intended to serve as a summary of both the potentially useful properties of these materials and the methods for the identification and characterization of 'unknown' nickel hydroxide-based samples.

701 citations

Journal ArticleDOI
TL;DR: A strategy for fabrication of ACs comprising only isolated nickel/iron atoms anchored on graphdiyne is reported, which shows high hydrogen evolution electrocatalysis activities and motivates the authors to develop a general approach in the field of single-atom transition-metal catalysis.
Abstract: Electrocatalysis by atomic catalysts is a major focus of chemical and energy conversion effort. Although transition-metal-based bulk electrocatalysts for electrochemical application on energy conversion processes have been reported frequently, anchoring the stable transition-metal atoms (e.g. nickel and iron) still remains a practical challenge. Here we report a strategy for fabrication of ACs comprising only isolated nickel/iron atoms anchored on graphdiyne. Our findings identify the very narrow size distributions of both nickel (1.23 A) and iron (1.02 A), typical sizes of single-atom nickel and iron. The precision of this method motivates us to develop a general approach in the field of single-atom transition-metal catalysis. Such atomic catalysts have high catalytic activity and stability for hydrogen evolution reactions.

692 citations

Journal ArticleDOI
Bo You1, Nan Jiang1, Meili Sheng1, Margaret Winona Bhushan1, Yujie Sun1 
TL;DR: In this paper, a facile two-step method was proposed to synthesize three-dimensional hierarchically porous urchin-like Ni2P microsphere superstructures anchored on nickel foam (Ni2P/Ni/NF) as bifunctional electrocatalysts for overall water splitting.
Abstract: The development of high-performance nonprecious electrocatalysts with both H2 and O2 evolution reaction (HER and OER) activities for overall water splitting is highly desirable but remains a grand challenge. Herein, we report a facile two-step method to synthesize three-dimensional hierarchically porous urchin-like Ni2P microsphere superstructures anchored on nickel foam (Ni2P/Ni/NF) as bifunctional electrocatalysts for overall water splitting. The Ni2P/Ni/NF catalysts were prepared by template-free electrodeposition of porous nickel microspheres on nickel foam followed by phosphidation. The hierarchically macroporous superstructures with 3D configuration can reduce ion transport resistance and facilitate the diffusion of gaseous products (H2 and O2). The optimal Ni2P/Ni/NF exhibited remarkable catalytic performance and outstanding stability for both the HER and OER in alkaline electrolyte (1.0 M KOH). For the HER, Ni2P/Ni/NF afforded a current density of 10 mA cm–2 at a low overpotential of only −98 mV. ...

692 citations

Journal ArticleDOI
TL;DR: The hydrogen evolution reaction rate on a Ni electrode modified by Ni(OH)(2) nanoclusters is about four times higher than on a bare Ni surface.
Abstract: Active in alkaline environment: The activity of nickel, silver, and copper catalysts for the electrochemical transformation of water to molecular hydrogen in alkaline solutions was enhanced by modification of the metal surfaces by Ni(OH)(2) (see picture; I = current density and η = overpotential). The hydrogen evolution reaction rate on a Ni electrode modified by Ni(OH)(2) nanoclusters is about four times higher than on a bare Ni surface.

671 citations

Journal ArticleDOI
TL;DR: In this article, the Ni-Bi films can be prepared with precise thickness control and operate at modest overpotential providing an alternative to the Co catalyst for applications in solar energy conversion.
Abstract: Thin catalyst films with electrocatalytic water oxidation properties similar to those of a recently reported Co-based catalyst can be electrodeposited from dilute Ni2+ solutions in borate electrolyte at pH 9.2 (Bi). The Ni-Bi films can be prepared with precise thickness control and operate at modest overpotential providing an alternative to the Co catalyst for applications in solar energy conversion.

669 citations


Network Information
Related Topics (5)
Oxide
213.4K papers, 3.6M citations
92% related
Hydrogen
132.2K papers, 2.5M citations
90% related
Aqueous solution
189.5K papers, 3.4M citations
89% related
Carbon
129.8K papers, 2.7M citations
89% related
Raman spectroscopy
122.6K papers, 2.8M citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20233,184
20226,229
20211,949
20202,693
20193,234
20183,107