scispace - formally typeset
Search or ask a question
Topic

Nitrite

About: Nitrite is a research topic. Over the lifetime, 15425 publications have been published within this topic receiving 484581 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: It is concluded that dietary nitrate and direct luminal application of acidified nitrite decrease diclofenac- and taurocholate-induced mucosal damage and suggest an important physiological role of nitrate in the diet.
Abstract: Salivary nitrate from dietary or endogenous sources is reduced to nitrite by oral bacteria. In the acidic stomach, nitrite is further reduced to bioactive nitrogen oxides, including nitric oxide (NO). In this study, we investigated the gastroprotective role of nitrate intake and of luminally applied nitrite against provocation with diclofenac and taurocholate. Mucosal permeability ((51)Cr-EDTA clearance) and gastric mucosal blood flow (laser-Doppler flowmetry) were measured in anesthetized rats, either pretreated with nitrate in the drinking water or given acidified nitrite luminally. Diclofenac was given intravenously and taurocholate luminally to challenge the gastric mucosa. Luminal NO content and nitrite content in the gastric mucus were determined by chemiluminescence. The effect of luminal administration of acidified nitrite on the mucosal blood flow was also investigated in endothelial nitric oxide synthase-deficient mice. Rats pretreated with nitrate or given nitrite luminally had higher gastric mucosal blood flow than controls. Permeability increased more during the provocation in the controls than in the nitrate- and nitrite-treated animals. Dietary nitrate increased luminal NO levels 50 times compared with controls. Nitrate intake also resulted in nitrite accumulation in the loosely adherent mucous layer; after removal of this mucous layer, blood flow was reduced. Nitrite administrated luminally in endothelial nitric oxide synthase-deficient mice increased mucosal blood flow. We conclude that dietary nitrate and direct luminal application of acidified nitrite decrease diclofenac- and taurocholate-induced mucosal damage. The gastroprotective effect likely involves a higher mucosal blood flow caused by nonenzymatic NO production. These data suggest an important physiological role of nitrate in the diet.

142 citations

Journal ArticleDOI
TL;DR: It is concluded that the electron transfer from menaquinol to the catalytic subunit (NrfA) of W. succinogenes nitrite reductase is mediated by NrfH, and the products of nrfI and nrfJ resemble proteins involved in cytochrome c biogenesis.
Abstract: Wolinella succinogenes can grow by anaerobic respiration with nitrate or nitrite using formate as electron donor. Two forms of nitrite reductase were isolated from the membrane fraction of W. succinogenes. One form consisted of a 58 kDa polypeptide (NrfA) that was identical to the periplasmic nitrite reductase. The other form consisted of NrfA and a 22 kDa polypeptide (NrfH). Both forms catalysed nitrite reduction by reduced benzyl viologen, but only the dimeric form catalysed nitrite reduction by dimethylnaphthoquinol. Liposomes containing heterodimeric nitrite reductase, formate dehydrogenase and menaquinone catalysed the electron transport from formate to nitrite; this was coupled to the generation of an electrochemical proton potential (positive outside) across the liposomal membrane. It is concluded that the electron transfer from menaquinol to the catalytic subunit (NrfA) of W. succinogenes nitrite reductase is mediated by NrfH. The structural genes nrfA and nrfH were identified in an apparent operon (nrfHAIJ) with two additional genes. The gene nrfA encodes the precursor of NrfA carrying an N-terminal signal peptide (22 residues). NrfA (485 residues) is predicted to be a hydrophilic protein that is similar to the NrfA proteins of Sulfurospirillum deleyianum and of Escherichia coli. NrfH (177 residues) is predicted to be a membrane-bound tetrahaem cytochrome c belonging to the NapC/NirT family. The products of nrfI and nrfJ resemble proteins involved in cytochrome c biogenesis. The C-terminal third of NrfI (902 amino acid residues) is similar to CcsA proteins from Gram-positive bacteria, cyanobacteria and chloroplasts. The residual N-terminal part of NrfI resembles Ccs1 proteins. The deduced NrfJ protein resembles the thioredoxin-like proteins (ResA) of Helicobacter pylori and of Bacillus subtilis, but lacks the common motif CxxC of ResA. The properties of three deletion mutants of W. succinogenes (DeltanrfJ, DeltanrfIJ and DeltanrfAIJ) were studied. Mutants DeltanrfAIJ and DeltanrfIJ did not grow with nitrite as terminal electron acceptor or with nitrate in the absence of NH4+ and lacked nitrite reductase activity, whereas mutant DeltanrfJ showed wild-type properties. The NrfA protein formed by mutant DeltanrfIJ seemed to lack part of the haem C, suggesting that NrfI is involved in NrfA maturation.

142 citations

Journal ArticleDOI
TL;DR: The volatile profiles of fermented sausages made with either Staphylococcus xylosus or S. carnosus starter cultures were studied with regard to the influence of salt concentration, ripening time and three different combinations of curing ingredients-nitrate, nitrite or nitrite/ascorbate.

141 citations

Journal ArticleDOI
TL;DR: In this paper, the authors extended Schulthess et al.'s model with the consumption of organic substrate and with nitrification to predict the nitrous oxide (N2O) accumulation in continuously fed full scale waste water treatment plants.

141 citations

Journal ArticleDOI
TL;DR: The results indicate that physiological responses, and perhaps environmental adaptations, to N compounds are organism specific for methanotrophs.
Abstract: Ecological studies have indicated that relative abundances of Gammaproteobacteria methanotrophs (Gamma-MOB) vs. Alphaproteobacteria methanotrophs (Alpha-MOB) in nitrogen (N) impacted soils are dictated in part by their abilities to tolerate inhibitory effects of ammonium and nitrite. In particular, ammonia is a cometabolic substrate and competitive inhibitor of methane monooxygenase. The rates of ammonia and hydroxylamine oxidation and inhibition of methane-oxidizing activity by ammonium and nitrite were compared among two Gamma-MOB and two Alpha-MOB to determine whether methanotrophs of the same class shared similar physiological profiles. Each isolate exhibited unique Km(app) for ammonia and Vmax for nitrite production with or without reductant (methane or sodium formate). The rates of nitrite production from hydroxylamine followed similar trends to rates of ammonia oxidation, indicating that hydroxylamine-oxidizing enzymes were central participants in the ammonia-oxidizing pathway. Methylomonas methanica was incapable of either ammonia or hydroxylamine oxidation. A broad range of sensitivities to ammonium and nitrite inhibition were measured with little consistency between isolates of the same class. The results indicate that physiological responses, and perhaps environmental adaptations, to N compounds are organism specific for methanotrophs.

141 citations


Network Information
Related Topics (5)
Glutathione
42.5K papers, 1.8M citations
85% related
Reactive oxygen species
36.6K papers, 2M citations
84% related
Amino acid
124.9K papers, 4M citations
82% related
Fatty acid
74.5K papers, 2.2M citations
82% related
Ascorbic acid
93.5K papers, 2.5M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023606
20221,333
2021475
2020459
2019467
2018509