scispace - formally typeset
Search or ask a question
Topic

Nitrite

About: Nitrite is a research topic. Over the lifetime, 15425 publications have been published within this topic receiving 484581 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The results indicate that the efficiency of inhibitors in containment of SRB depends on the composition and metabolic state of the microbial community.
Abstract: The effects of the metabolic inhibitors, sodium nitrite and ammonium molybdate, on production of H2S by a pure culture of the sulfate-reducing bacterium (SRB) Desulfovibrio sp. strain Lac6 and a consortium of SRB, enriched from produced water of a Canadian oil field, were investigated. Addition of 0.1 mM nitrite or 0.024 mM molybdate at the start of growth prevented the production of H2S by strain Lac6. With exponentially growing cultures, higher levels of inhibitors, 0.25 mM nitrite or 0.095 mM molybdate, were required to suppress the production of H2S. Simultaneous addition of nitrite and molybdate had a synergistic effect: at time 0, 0.05 mM nitrite and 0.01 mM molybdate, whereas during the exponential phase, 0.1 mM nitrite and 0.047 mM molybdate were sufficient to stop H2S production. With an exponentially growing consortium of SRB, enriched from produced water of the Coleville oil field, much higher levels of inhibitors, 4 mM nitrite or 0.47 mM molybdate, were needed to stop the production of H2S. The addition of these inhibitors had no effect on the composition of the microbial community, as shown by reverse sample genome probing. The results indicate that the efficiency of inhibitors in containment of SRB depends on the composition and metabolic state of the microbial community. Journal of Industrial Microbiology & Biotechnology (2001) 26, 350–355.

125 citations

Journal ArticleDOI
TL;DR: The question that remains is whether this NR-derived NO is a signalling molecule or the mere product of an enzymatic side reaction like the products generated by the oxygenase activity of RuBisCO.
Abstract: Nitric oxide (NO) is a diffusible, very reactive gas that is involved in the regulation of many processes in plants. Several enzymatic sources of NO production have been identified in recent years. Nitrate reductase (NR) is one of them and it has been shown that this well-known plant protein, apart from its role in nitrate reduction and assimilation, can also catalyse the reduction of nitrite to NO. This reaction can produce large amounts of NO, or at least more than is needed for signalling, as some escape of NO to the outside medium can be detected after NR activation. A role for NO and NR in stomata functioning in response to abscisic acid has also been proposed. The question that remains is whether this NR-derived NO is a signalling molecule or the mere product of an enzymatic side reaction like the products generated by the oxygenase activity of RuBisCO.

125 citations

Journal ArticleDOI
TL;DR: In order to maximise the health benefits from eating vegetables, measures should be taken to reduce the nitrate and nitrite exposures while maintaining the recommended vegetable intake.

125 citations

Journal ArticleDOI
S. Wasmus1, E. J. Vasini1, M. Krausa1, H. T. Mishima1, Wolf Vielstich1 
TL;DR: In this paper, the electro-oxidation and -reduction of 0.05 M ammonia, 0.01 M hydroxylamine and 0.5 M KOH at Pt-black electrodes has been investigated using a combination of cyclic voltammetry with on-line MS analysis of volatile products.

125 citations

Journal ArticleDOI
TL;DR: In this paper, Nitrogen isotope discrimination during denitrification in soils of nitrate containing natural concentrations of 14N and 15N was studied by determining the amount and the 15N content of Nitrate-N and (nitrate + nitrite)-N in nitrate-treated soils incubated under anaerobic conditions (He atmosphere).
Abstract: Nitrogen isotope discrimination during denitrification in soils of nitrate containing natural concentrations of 14N and 15N was studied by determining the amount and the 15N content of nitrate-N and (nitrate + nitrite)-N in nitrate-treated soils incubated under anaerobic conditions (He atmosphere) for various times after treatment with glucose to promote denitrification. Analyses performed showed that the nitrate-N lost on incubation of these soils could largely be accounted for as products of denitrification (nitrite, NO. N2O and N2). The studies reported show that marked discrimination between 14N and 15N occurs during denitrification of nitrate in soils and that significant N isotope effects occur both in reduction of nitrate to nitrite and in reduction of nitrite to gaseous forms of N. They also indicate that the overall N isotope effect during denitrification of nitrate in soil will depend upon the tendency of the soil to accumulate nitrite under conditions that induce denitrification. It is concluded that discrimination between 14N and 15N during denitrification in soils of nitrate containing natural concentrations of these isotopes is of sufficient magnitude to invalidate the use of N isotope-ratio analyses for assessment of the contributions of soil and fertilizer N to nitrate in surface or ground waters or to nitrous oxide in the atmosphere.

125 citations


Network Information
Related Topics (5)
Glutathione
42.5K papers, 1.8M citations
85% related
Reactive oxygen species
36.6K papers, 2M citations
84% related
Amino acid
124.9K papers, 4M citations
82% related
Fatty acid
74.5K papers, 2.2M citations
82% related
Ascorbic acid
93.5K papers, 2.5M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023606
20221,333
2021475
2020459
2019467
2018509