scispace - formally typeset
Search or ask a question
Topic

Nitrite

About: Nitrite is a research topic. Over the lifetime, 15425 publications have been published within this topic receiving 484581 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Under anoxic conditions, pure cultures of N. eutropha were able to denitrify with molecular hydrogen as electron donor and nitrite as the only electron acceptor in a sulfide-reduced complex medium, and the increase of cell numbers was directly coupled to nitrite reduction.
Abstract: Cells of the obligately lithotrophic species Nitrosomonas europaea and Nitrosomonas eutropha were able to nitrify and denitrify at the same time when grown under oxygen limitation. In addition to oxygen, nitrite was used as an electron acceptor. The simultaneous nitrification and denitrification resulted in significant formation of the gaseous N-compounds nitrous oxide and dinitrogen, causing significant nitrogen loss. In mixed cultures of N. europaea and various chemoorganotrophic bacteria, the nitrogen loss was strongly influenced by the partners growing under oxygen limitation. Under anoxic conditions, pure cultures of N. eutropha were able to denitrify with molecular hydrogen as electron donor and nitrite as the only electron acceptor in a sulfide-reduced complex medium. The increase of cell numbers was directly coupled to nitrite reduction. Nitrous oxide and dinitrogen were the only detectable end products. In pure cultures of N. eutropha and mixed cultures of N. eutropha and Enterobacter aerogenes, ammonium and nitrite disappeared slowly at a molar ratio of about one when oxygen was absent. However, under these conditions cell growth was not measurable.

393 citations

Journal Article

391 citations

Journal ArticleDOI
TL;DR: Results indicate the presence of a dioxygen-independent pathway of hydroxyl radical production that cannot be assigned to nitrate/nitrite photolysis or to Fenton chemistry.
Abstract: A new method is employed to determine the rates of photochemical hydroxyl radical (OH) formation in aqueous solutions and in natural waters under both aerobic and anaerobic conditions. Quantum yields for OH formation from the photolysis of nitrate and nitrite obtained by this method are in good agreement with previous measurements. Photolysis of Suwannee River fulvic acid (SRFA) solutions produced the hydroxyl radical under anaerobic conditions in proportion to the SRFA concentration. Under aerobic conditions, the quantum yields for OH formation were slightly higher and exhibited a different wavelength dependence than those obtained under anaerobic conditions. Experiments employing catalase indicate that Fenton chemistry can account for at most 50% of the total signal under aerobic conditions for SRFA irradiated at 310 and 320 nm. These results indicate the presence of a dioxygen-independent pathway of hydroxyl radical production that cannot be assigned to nitrate/nitrite photolysis or to Fenton chemistry...

390 citations

Journal ArticleDOI
TL;DR: The cause of seasonal failure of a nitrifying municipal landfill leachate treatment plant utilizing a fixed biofilm was investigated by wastewater analyses and batch respirometric tests at every treatment stage and high free ammonia (NH3-N) inhibited not only nitrite oxidizing bacteria (NOB) but also ammonia oxidizingacteria (AOB).

389 citations

Journal ArticleDOI
TL;DR: Many fungi in the centre of the group of Fusarium and its teleomorphs were shown to be capable of reducing nitrite anaerobically to form nitric oxide (NO), nitrous oxide (N 2O), and/or dinitrogen (N2).
Abstract: Many fungi in the centre of the group of Fusarium and its teleomorphs were shown to be capable of reducing nitrite anaerobically to form nitric oxide (NO), nitrous oxide (N2O), and/or dinitrogen (N2). Several strains could reduce nitrate as well. Nitrous oxide was the major product of the reduction of nitrate or nitrite. Several fungi could also form N2. When [15]nitrite was used as substrate for the N2-forming dinitrification, 15N2O, 15NO, and 14N15N were obtained as the products. These results demonstrated that, unexpectedly, many fungi have denitrifying abilities. It was also shown that the fungal system contains a unique reaction, formation of a hybrid dinitrogen.

389 citations


Network Information
Related Topics (5)
Glutathione
42.5K papers, 1.8M citations
85% related
Reactive oxygen species
36.6K papers, 2M citations
84% related
Amino acid
124.9K papers, 4M citations
82% related
Fatty acid
74.5K papers, 2.2M citations
82% related
Ascorbic acid
93.5K papers, 2.5M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023606
20221,333
2021475
2020459
2019467
2018509