scispace - formally typeset
Search or ask a question
Topic

Nitrite

About: Nitrite is a research topic. Over the lifetime, 15425 publications have been published within this topic receiving 484581 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The physiology of anaerobic ammonium oxidizing (anammox) aggregates grown in a sequencing batch reactor was investigated quantitatively and the anammox process was completely inhibited by nitrite concentrations higher than 0.1 g of nitrogen per liter.
Abstract: The physiology of anaerobic ammonium oxidizing (anammox) aggregates grown in a sequencing batch reactor was investigated quantitatively. The physiological pH and temperature ranges were 6.7 to 8.3 and 20 to 43°C, respectively. The affinity constants for the substrates ammonium and nitrite were each less than 0.1 mg of nitrogen per liter. The anammox process was completely inhibited by nitrite concentrations higher than 0.1 g of nitrogen per liter. Addition of trace amounts of either of the anammox intermediates (1.4 mg of nitrogen per liter of hydrazine or 0.7 mg of nitrogen per liter of hydroxylamine) restored activity completely.

1,274 citations

Journal ArticleDOI
TL;DR: An accurate, dependable determination of 0−60 μg-at/l. of NO−3-N in sea water has been developed by as mentioned in this paper, where the sample is treated with tetrasodium ethylenediaminetetraacetate solution and passed through a column of copperized cadmium filings.
Abstract: An accurate, dependable determination of 0–60 μg-at./l. of NO−3-N in sea water has been developed. The sample is treated with tetrasodium ethylenediaminetetraacetate solution and passed through a column of copperized cadmium filings. A nearly quantitative reduction of nitrate to nitrite results. Nitrite is then determined by a diazotization method. Neither sulphide nor high nitrite concentrations interferes. Approximately eight samples per hour per column can be analysed with a standard deviation of 0.12 μg-at./l. at the 20 μg-at./l. level.IntroductionAccurate determinations of nitrate ions in sea water have been difficult, especially under shipboard conditions.The colorimetric method described by Harvey (1926, 1930) and improved by Cooper (1932), Zwicker & Robinson (1944), and others uses strychnidine in concentrated sulphuric acid to produce a red colour. The reagent lacks reliable sensitivity, because it is dependent on the rates of mixing and cooling.In a method by Armstrong (1963), the absorbance of nitrosyl chloride in the UV region is measured with a spectrophotometer. While the method is good for small samples containing high concentrations of nitrate, the use of concentrated sulphuric acid and lack of sensitivity limit its use in routine analysis.A method in which nitrate is quantitatively reduced to nitrite would be advantageous, because nitrite can be readily determined by the sensitive diazotization method proposed by Griess (1879). Several such methods have been proposed. FOyn (1951), Vatova (1956), and Chow & Johnstone (1962) used zinc powder for the reduction, but the reduction is sensitive to temperature, and it is necessary to centrifuge or filter each sample.

1,182 citations

Journal ArticleDOI
Ernest G. Jaworski1
TL;DR: The measurement of nitrate reductase activity in intact plant tissue based on reduction of nitrates to nitrite is facilitated by the use of propanol and other organic solvents added to the incubation medium.

1,135 citations

Journal ArticleDOI
TL;DR: Mycobacterium bovis infection of C3h/He and C3H/HeJ mice resulted in a large increase in nitrate production over the course of the infection for both strains, suggesting T-lymphocyte-mediated activation of macrophages as a potent stimulus for nitrate biosynthesis.
Abstract: Escherichia coli lipopolysaccharide (LPS)-induced nitrate biosynthesis was studied in LPS-sensitive C3H/He and LPS-resistant C3H/HeJ mice. Intraperitoneal injection of 15 micrograms of LPS led to a temporary 5- to 6-fold increase in blood nitrate concentration in the C3H/He strain. Levels of nitrate excreted in the urine were also increased. In contrast, no increase was observed in the C3H/HeJ strain with LPS injections up to 175 micrograms. Furthermore, thioglycolate-elicited peritoneal macrophages from C3H/He, but not from C3H/HeJ mice, produced nitrite (60%) and nitrate (40%) when cultured with LPS (10 micrograms/ml). T-lymphocyte addition/depletion experiments showed the presence of T cells enhanced this response. However, LPS did not cause nitrite or nitrate production in cultures of spleen lymphocytes from either strain. LPS-induced nitrate synthesis was also observed with nude mice and CBA/N mice, indicating that neither functional T lymphocytes nor LPS-responsive B lymphocytes were required for the response in vivo. This was consistent with the in vitro results showing macrophages alone were competent. Mycobacterium bovis infection of C3H/He and C3H/HeJ mice resulted in a large increase in nitrate production over the course of the infection for both strains, suggesting T-lymphocyte-mediated activation of macrophages as a potent stimulus for nitrate biosynthesis. The synthesis of nitrite is significant in that it can directly participate in the endogenous formation of nitrosamines and may also be involved in some aspect of the chemistry of cytotoxicity.

1,123 citations

Journal ArticleDOI
TL;DR: Recovering nitrite and nitrate from plasma is near-quantitative (87%) and reproducible, and nitrite in whole blood is very rapidly oxidized to nitrate, and therefore plasma nitrite determination alone is meaningless.
Abstract: Plasma nitrite and nitrate determinations are increasingly being used in clinical chemistry as markers for the activity of nitric oxide synthase and the production of nitric oxide radicals. However, a systematic evaluation of the determination of nitrite and nitrate in plasma has not been performed. In this study the recovery and stability of nitrite and nitrate in whole blood and in plasma, the relation between nitrite and nitrate concentrations in plasma, and possible sources of artifacts were investigated. The main conclusions are: (a) Recovery of nitrite and nitrate from plasma is near-quantitative (87%) and reproducible; (b) nitrite and nitrate are stable in (frozen) plasma for at least 1 year; (c) nitrite in whole blood is very rapidly (> 95% in 1 h) oxidized to nitrate, and therefore plasma nitrite determination alone is meaningless; (d) the ranges of nitrite and nitrate concentrations in plasma samples of 26 healthy persons are 1.3-13 mumol/L (mean 4.2 mumol/L) and 4.0-45.3 mumol/L (mean 19.7 mumol/L), respectively; (e) plasma nitrite and nitrate concentrations were not correlated (nitrite as % of total nitrite + nitrate varied from 3.9% to 88% in plasma samples); and (f) plasma samples should be deproteinized, and background controls for each sample should be included in the assay, to avoid measuring artifactually high nitrite and nitrate concentrations in plasma.

1,097 citations


Network Information
Related Topics (5)
Glutathione
42.5K papers, 1.8M citations
85% related
Reactive oxygen species
36.6K papers, 2M citations
84% related
Amino acid
124.9K papers, 4M citations
82% related
Fatty acid
74.5K papers, 2.2M citations
82% related
Ascorbic acid
93.5K papers, 2.5M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023606
20221,333
2021475
2020459
2019467
2018509