scispace - formally typeset
Search or ask a question
Topic

Nitrobenzene

About: Nitrobenzene is a research topic. Over the lifetime, 5285 publications have been published within this topic receiving 83368 citations. The topic is also known as: essence of mirbane & nitrobenzol.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the absorption coefficients of pyridine for acidic sites and nitrobenzene for basic sites, estimated for various metal oxides by IR coupled with mass spectrometry, were within ±10% of the average value, which indicates that the integrated molar extinction coefficients could be used for semiquantification of acid/base sites of various oxides samples.
Abstract: Acid/base properties (type, strength, number) of a wide range of metal oxides were studied by IR (infra-red) spectroscopy. Ammonia, pyridine and CD3CN were used as probe molecules for acidity measurement. CO2, CHCl3, benzaldehyde and nitrobenzene were used for basicity measurement. Pyridine for the nature and number of acid sites, CD3CN for the strength of acid sites, CHCl3 for the strength of basic sites and nitrobenzene for the number of basic sites were found to be suitable probes. The absorption coefficients of pyridine for acidic sites and nitrobenzene for basic sites, estimated for various metal oxides by IR coupled with mass spectrometry, were within ±10% of the average value, which indicates that the integrated molar extinction coefficients could be used for semi-quantification of acid/base sites of various oxides samples. The comprehensive IR results in this study will be available to characterize properties of Lewis and Bronsted acid sites and basic sites on metal oxides by a simple IR experiment.

270 citations

Journal ArticleDOI
TL;DR: The degradation of the compounds present in a previously chlorinated wastewater resulting from the production of azoic dyes has been studied in this article, where the first step developed was the characterization of the spillage water by GC/MS and GC/FID.

256 citations

Journal ArticleDOI
TL;DR: Results indicate that the catabolic pathway involves the reduction of nitrobenzene to nitrosobenzenes and then to hydroxylaminobenzene; each of these steps requires 1 mol of NADPH.
Abstract: A Pseudomonas pseudoalcaligenes able to use nitrobenzene as the sole source of carbon, nitrogen, and energy was isolated from soil and groundwater contaminated with nitrobenzene. The range of aromatic substrates able to support growth was limited to nitrobenzene, hydroxylaminobenzene, and 2-aminophenol. Washed suspensions of nitrobenzene-grown cells removed nitrobenzene from culture fluids with the concomitant release of ammonia. Nitrobenzene, nitrosobenzene, hydroxylaminobenzene, and 2-aminophenol stimulated oxygen uptake in resting cells and in extracts of nitrobenzene-grown cells. Under aerobic and anaerobic conditions, crude extracts converted nitrobenzene to 2-aminophenol with oxidation of 2 mol of NADPH. Ring cleavage, which required ferrous iron, produced a transient yellow product with a maximum A380. In the presence of NAD, the product disappeared and NADH was produced. In the absence of NAD, the ring fission product was spontaneously converted to picolinic acid, which was not further metabolized. These results indicate that the catabolic pathway involves the reduction of nitrobenzene to nitrosobenzene and then to hydroxylaminobenzene; each of these steps requires 1 mol of NADPH. An enzyme-mediated Bamberger-like rearrangement converts hydroxylaminobenzene to 2-aminophenol, which then undergoes meta ring cleavage to 2-aminomuconic semialdehyde. The mechanism for release of ammonia and subsequent metabolism are under investigation.

252 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the electrochemical degradation of Reactive Red 195 (RR195) in aqueous solution on a Ti/SnO 2 -Sb/PbO 2 electrode.

248 citations

Journal ArticleDOI
TL;DR: Investigation of the conversion of NB to aniline (AN), a less toxic endproduct that can easily be mineralized, using a fed-batch bioelectrochemical system with microbially catalyzed cathode indicated that the cathode was dominated by an Enterococcus species closely related toEnterococcus aquimarinus.
Abstract: Nitrobenzene (NB) is a toxic compound that is often found as a pollutant in the environment. The present removal strategies suffer from high cost or slow conversion rate. Here, we investigated the conversion of NB to aniline (AN), a less toxic endproduct that can easily be mineralized, using a fed-batch bioelectrochemical system with microbially catalyzed cathode. When a voltage of 0.5 V was applied in the presence of glucose, 88.2 ± 0.60% of the supplied NB (0.5 mM) was transformed to AN within 24 h, which was 10.25 and 2.90 times higher than an abiotic cathode and open circuit controlled experiment, respectively. AN was the only product detected during bioelectrochemical reduction of NB (maximum efficiency 98.70 ± 0.87%), whereas in abiotic conditions nitrosobenzene was observed as intermediate of NB reduction to AN (decreased efficiency to 73.75 ± 3.2%). When glucose was replaced by NaHCO(3), the rate of NB degradation decreased about 10%, selective transformation of NB to AN was still achieved (98.93 ± 0.77%). Upon autoclaving the cathode electrode, nitrosobenzene was formed as an intermediate, leading to a decreased AN formation efficiency of 71.6%. Cyclic voltammetry highlighted higher peak currents as well as decreased overpotentials for NB reduction at the biocathode. 16S rRNA based analysis of the biofilm on the cathode indicated that the cathode was dominated by an Enterococcus species closely related to Enterococcus aquimarinus.

248 citations


Network Information
Related Topics (5)
Aqueous solution
189.5K papers, 3.4M citations
92% related
Adsorption
226.4K papers, 5.9M citations
89% related
Alkyl
223.5K papers, 2M citations
89% related
Ionic liquid
57.2K papers, 1.6M citations
88% related
Sorption
45.8K papers, 1.3M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023171
2022342
2021123
2020129
2019123
2018146