scispace - formally typeset
Search or ask a question
Topic

Nitrobenzene

About: Nitrobenzene is a research topic. Over the lifetime, 5285 publications have been published within this topic receiving 83368 citations. The topic is also known as: essence of mirbane & nitrobenzol.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the extraction of caesium and rubidium traces in the presence of weighable amounts of lithium and sodium dipicrylaminates and nitrates was studied radiometrically.

53 citations

Journal ArticleDOI
TL;DR: In this paper, surface silylation of MCM-41 with trimethylchlorosilane was conducted to improve the adsorption of nitrobenzene from aqueous solution.

53 citations

Journal ArticleDOI
TL;DR: The reductive carbonylation of nitrobenzene catalyzed by selenium to yield unsymmetric phenylureas has been studied in this paper, where secondary amines were used as coreagents, a single product, phnhconr2, was formed.

53 citations

Journal ArticleDOI
TL;DR: Photocatalytic solvent-free hydroxylation of benzene derivatives with electron-withdrawing substituents used as neat solvents has been achieved for the first time by using DDQ as a super photooxidant to yield the corresponding phenol derivatives and 2,3-dichloro-5,6-dicyanohydroquinone (DDQH2 ) in the presence of water under deaerated conditions.
Abstract: Photoinduced hydroxylation of neat deaerated benzene to phenol occurred under visible-light irradiation of 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ), which acts as a super photooxidant in the presence of water. Photocatalytic solvent-free hydroxylation of benzene derivatives with electron-withdrawing substituents such as benzonitrile, nitrobenzene, and trifluoromethylbenzene used as neat solvents has been achieved for the first time by using DDQ as a super photooxidant to yield the corresponding phenol derivatives and 2,3-dichloro-5,6-dicyanohydroquinone (DDQH2 ) in the presence of water under deaerated conditions. In the presence of dioxygen and tert-butyl nitrite, the photocatalytic hydroxylation of neat benzene occurred with DDQ as a photocatalyst to produce phenol. The photocatalytic reactions are initiated by oxidation of benzene derivatives with the singlet and triplet excited states of DDQ to form the corresponding radical cations, which associate with benzene derivatives to produce the dimer radical cations, which were detected by the femto- and nanosecond laser flash photolysis measurements to clarify the photocatalytic reaction mechanisms. Radical cations of benzene derivatives react with water to yield the OH-adduct radicals. On the other hand, DDQ(.) (-) produced by the photoinduced electron transfer from benzene derivatives reacts with the OH-adduct radicals to yield the corresponding phenol derivatives and DDQH2 . DDQ is recovered by the reaction of DDQH2 with tert-butyl nitrite when DDQ acts as a photocatalyst for the hydroxylation of benzene derivatives by dioxygen.

53 citations


Network Information
Related Topics (5)
Aqueous solution
189.5K papers, 3.4M citations
92% related
Adsorption
226.4K papers, 5.9M citations
89% related
Alkyl
223.5K papers, 2M citations
89% related
Ionic liquid
57.2K papers, 1.6M citations
88% related
Sorption
45.8K papers, 1.3M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023171
2022342
2021123
2020129
2019123
2018146