scispace - formally typeset
Search or ask a question
Topic

Nitrogen fixation

About: Nitrogen fixation is a research topic. Over the lifetime, 7940 publications have been published within this topic receiving 232921 citations. The topic is also known as: GO:0009399.


Papers
More filters
Journal ArticleDOI
TL;DR: There was wide variation in the nitrogenase (acetylene reduction) activity of isolates grown in nitrogen-free, semisolid medium, with differences in average activities between regions, and the majority of the most active nitrogen fixers were A. brasilense and A. lipoferum.
Abstract: A total of 285 strains of Azospirillum were isolated from soils from seven geographic regions in New South Wales, Australia, using an immunomagnetic separation procedure which does not select strains according to their nitrogen-fixing ability. By combining amplification and restriction analysis of 16S rDNA (ARDRA) patterns with serological, morphological and biochemical results, we found that almost all isolates were A. brasilense and A. lipoferum. There was wide variation in the nitrogenase (acetylene reduction) activity of isolates grown in nitrogen-free, semisolid medium, with differences in average activities between regions. Isolates with zero or negligible nitrogenase activity were found in samples from only two regions, one of which had two out of 26 strains with no activity. Representative isolates, having the highest, the lowest, and intermediate nitrogen fixation rates for each site, were used to inoculate the roots of wheat plants in a model system. Most of the isolates, in association with wheat roots, reduced between 1 and 5 nmol C2H4· mg dry root−1· day−1, but certain strains gave considerably higher activities. The rank order of nitrogen fixation activity on wheat roots did not correlate well with that of nitrogen fixation in pure culture; some strains that fixed nitrogen vigorously in pure culture had low rates of fixation on roots, and vice versa. This inconsistency could not be explained by variations in the root colonizing ability of different strains. However, isolates of A. lipoferum had a higher average nitrogenase activity than A. brasilense, both in Nfb medium and in association with wheat roots. The majority of the most active nitrogen fixers were A. lipoferum. When wheat plants were inoculated with mixtures of two or four strains, nitrogen fixation rates were generally between the rates for the component strains when inoculated individually. There was no benefit from using mixtures of different strains.

75 citations

Journal ArticleDOI
TL;DR: The thermophilic green sulfur bacterium Chlorobium tepidum grew with N2, NH4+, or glutamine as the sole nitrogen source under phototrophic (anaerobic-light) conditions as mentioned in this paper.
Abstract: The thermophilic green sulfur bacterium Chlorobium tepidum grew with N2, NH4+, or glutamine as the sole nitrogen source under phototrophic (anaerobic-light) conditions. Growth on N2 required increased buffering capacity to stabilize uncharacterized pH changes that occurred during diazotrophic growth. Increased sulfide levels were stimulatory for growth on N2. Levels of nitrogenase activity (acetylene reduction) in N2-grown C. tepidum cells were very high, among the highest ever reported for anoxygenic phototrophic bacteria. Maximal acetylene reduction rates in C. tepidum cells were observed at 48 to 50 degrees C, which is about 15 degrees C higher than the optimum temperature for nitrogenase activity in mesophilic chlorobia, and nitrogenase activity in C. tepidum responded to addition of ammonia by a "switch-off/switch-on" mechanism like that in phototrophic purple bacteria. C. tepidum cells assimilated ammonia mainly via the glutamine synthetase-glutamate synthase pathway, elevated levels of both of these enzymes being present in cells grown on N2. These results show that N2 fixation can occur in green sulfur bacteria up to at least 60 degrees C and that regulatory mechanisms important in control of nitrogenase activity in mesophilic anoxygenic phototrophs also appear to regulate thermally active forms of the enzyme.

75 citations

Journal ArticleDOI
TL;DR: The amount of amino acids was strongly increased in both phloem exudates and nodules of the treatments with downregulated nodule activity, and a possible role of asparagine in an N-feedback regulation of nitrogen fixation in M. truncatula is discussed.
Abstract: The objective of this study was to assess whether a whole plant N-feedback regulation impact on nitrogen fixation in Medicago truncatula would manifest itself in shifts of the composition of the amino acid flow from shoots to nodules. Detected shifts in the phloem amino acid composition were supposed to be mimicked through artificial phloem feeding and concomitant measurement of nodule activity. The amino acid composition of the phloem exudates was analyzed from plants grown under the influence of treatments (limiting P supply or application of combined nitrogen) known to reduce nodule nitrogen fixation activity. Plants in nutrient solution were supplied with sufficient (9 microM) control, limiting (1 microM) phosphorus or 3 mM NH(4)NO(3) (downregulated nodule activity). Low phosphorus and the application of NH(4)NO(3) reduced per plant and specific nitrogenase activity (H(2) evolution). At day 64 of growth, phloem exudates were collected from cuts of the shoot base. The amount of amino acids was strongly increased in both phloem exudates and nodules of the treatments with downregulated nodule activity. The increase in the downregulated treatments was almost exclusively the result of a higher proportion of asparagine in both phloem exudates and nodules. Leaf labeling with (15)N showed that nitrogen from the leaves is retranslocated to nodules. An artificial phloem feeding with asparagine resulted in an increased concentration of asparagine in nodules and a decreased nodule activity. A possible role of asparagine in an N-feedback regulation of nitrogen fixation in M. truncatula is discussed.

75 citations

Journal ArticleDOI
01 Aug 1999-Genetics
TL;DR: Evidence is presented for a "nitrogen regulon" in Methanococcus and Methanobacterium species containing genes of nitrogen metabolism that are regulated coordinately at the transcriptional level via a common repressor binding site sequence, or operator.
Abstract: We have used genetic methods in Methanococcus maripaludis to study nitrogen metabolism and its regulation. We present evidence for a "nitrogen regulon" in Methanococcus and Methanobacterium species containing genes of nitrogen metabolism that are regulated coordinately at the transcriptional level via a common repressor binding site sequence, or operator. The implied mechanism for regulation resembles the general bacterial paradigm for repression, but contrasts with well-known mechanisms of nitrogen regulation in bacteria, which occur by activation. Genes in the nitrogen regulons include those for nitrogen fixation, glutamine synthetase, (methyl)ammonia transport, the regulatory protein GlnB, and ammonia-dependent NAD synthetase, as well as a gene of unknown function. We also studied the function of two novel GlnB homologues that are encoded within the nif gene cluster of diazotrophic methanogens. The phenotype resulting from a glnB null mutation in M. maripaludis provides direct evidence that glnB-like genes are involved in "ammonia switch-off," the post-transcriptional inhibition of nitrogen fixation upon addition of ammonia. Finally, we show that the gene nifX is not required for nitrogen fixation, in agreement with findings in several bacteria. These studies illustrate the utility of genetic methods in M. maripaludis and show the enhanced perspective that studies in the Archaea can bring to known biological systems.

75 citations


Network Information
Related Topics (5)
Rhizosphere
21.9K papers, 756.3K citations
92% related
Photosynthesis
19.7K papers, 895.1K citations
87% related
Germination
51.9K papers, 877.9K citations
86% related
Soil organic matter
39.8K papers, 1.5M citations
84% related
Soil fertility
33.7K papers, 859.4K citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023390
2022831
2021263
2020240
2019250
2018261