scispace - formally typeset
Search or ask a question
Topic

NMDA receptor

About: NMDA receptor is a research topic. Over the lifetime, 24226 publications have been published within this topic receiving 1365900 citations. The topic is also known as: N-Methyl-D-Aspartate receptor & N-Methylaspartate receptor.


Papers
More filters
Journal Article

[...]

TL;DR: The cloning of cDNAs encoding glutamate receptor subunits, which occurred mainly between 1989 and 1992, stimulated the development of ionotropic glutamate receptors in the brain.
Abstract: The ionotropic glutamate receptors are ligand-gated ion channels that mediate the vast majority of excitatory neurotransmission in the brain. The cloning of cDNAs encoding glutamate receptor subunits, which occurred mainly between 1989 and 1992 ([Hollmann and Heinemann, 1994][1]), stimulated this

4,052 citations

Journal ArticleDOI

[...]

02 Feb 1984-Nature
TL;DR: The voltage dependence of the NMDA receptor-linked conductance appears to be a consequence of the voltage dependenceof the Mg2+ block and its interpretation does not require the implication of an intramembrane voltage-dependent ‘gate’.
Abstract: The responses of vertebrate neurones to glutamate involve at least three receptor types. One of these, the NMDA receptor (so called because of its specific activation by N-methyl-D-aspartate), induces responses presenting a peculiar voltage sensitivity. Above resting potential, the current induced by a given dose of glutamate (or NMDA) increases when the cell is depolarized. This is contrary to what is observed at classical excitatory synapses, and recalls the properties of 'regenerative' systems like the Na+ conductance of the action potential. Indeed, recent studies of L-glutamate, L-aspartate and NMDA-induced currents have indicated that the current-voltage (I-V) relationship can show a region of 'negative conductance' and that the application of these agonists can lead to a regenerative depolarization. Furthermore, the NMDA response is greatly potentiated by reducing the extracellular Mg2+ concentration [( Mg2+]o) below the physiological level (approximately 1 mM). By analysing the responses of mouse central neurones to glutamate using the patch-clamp technique, we have now found a link between voltage sensitivity and Mg2+ sensitivity. In Mg2+-free solutions, L-glutamate, L-aspartate and NMDA open cation channels, the properties of which are voltage independent. In the presence of Mg2+, the single-channel currents measured at resting potential are chopped in bursts and the probability of opening of the channels is reduced. Both effects increase steeply with hyperpolarization, thereby accounting for the negative slope of the I-V relationship of the glutamate response. Thus, the voltage dependence of the NMDA receptor-linked conductance appears to be a consequence of the voltage dependence of the Mg2+ block and its interpretation does not require the implication of an intramembrane voltage-dependent 'gate'.

3,888 citations

Journal ArticleDOI

[...]

01 Feb 1986-Nature
TL;DR: This article showed that chronic intraventricular infusion of D,L-AP5 causes a selective impairment of place learning, which is highly sensitive to hippocampal damage, without affecting visual discrimination learning.
Abstract: Recent work has shown that the hippocampus contains a class of receptors for the excitatory amino acid glutamate that are activated by N-methyl-D-aspartate (NMDA) and that exhibit a peculiar dependency on membrane voltage in becoming active only on depolarization. Blockade of these sites with the drug aminophosphonovaleric acid (AP5) does not detectably affect synaptic transmission in the hippocampus, but prevents the induction of hippocampal long-term potentiation (LTP) following brief high-frequency stimulation. We now report that chronic intraventricular infusion of D,L-AP5 causes a selective impairment of place learning, which is highly sensitive to hippocampal damage, without affecting visual discrimination learning, which is not. The L-isomer of AP5 did not produce behavioural effects. AP5 treatment also suppressed LTP in vivo. These results suggest that NMDA receptors are involved in spatial learning, and add support to the hypothesis that LTP is involved in some, but not all, forms of learning.

3,422 citations

Journal ArticleDOI

[...]

01 Feb 1987-Nature
TL;DR: G glycine may facilitate excitatory transmission in the brain through an allosteric activation of the NMDA receptor, and can be observed in outside-out patches as an increase in the frequency of opening of the channels activated by NMDA agonists.
Abstract: Transmitters mediating 'fast' synaptic processes in the vertebrate central nervous system are commonly placed in two separate categories that are believed to exhibit no interaction at the receptor level. The 'inhibitory transmitters' (such as glycine and GABA) are considered to act only on receptors mediating a chloride conductance increase, whereas 'excitatory transmitters' (such as L-glutamate) are considered to activate receptors mediating a cationic conductance increase. The best known excitatory receptor is that specifically activated by N-methyl-D-aspartate (NMDA) which has recently been characterized at the single channel level. The response activated by NMDA agonists is unique in that it exhibits a voltage-dependent Mg block. We report here that this response exhibits another remarkable property: it is dramatically potentiated by glycine. This potentiation is not mediated by the inhibitory strychnine-sensitive glycine receptor, and is detected at a glycine concentration as low as 10 nM. The potentiation can be observed in outside-out patches as an increase in the frequency of opening of the channels activated by NMDA agonists. Thus, in addition to its role as an inhibitory transmitter, glycine may facilitate excitatory transmission in the brain through an allosteric activation of the NMDA receptor.

2,958 citations

Journal ArticleDOI

[...]

TL;DR: It was found that PCP-induced psychotomimetic effects are associated with submicromolar serum concentrations of PCP and the findings suggest that endogenous dysfunction of NMDA receptor-mediated neurotransmission might contribute to the pathogenesis of schizophrenia.
Abstract: Objective: Phencyclidine (PCP, “angel dust”) induces a psychotomimetic state that closely resembles schizophrenia. As opposed to amphetamine-induced psychosis, PCP-induced psychosis incorporates both positive (e.g., hallucinations, paranoia) and negative (e.g., emotional withdrawal, motor retardation) schizophrenic symptoms. PCP-induced psychosis also uniquely incorporates the formal thought disorder and neuropsychological deficits associated with schizophrenia. The purpose of the present paper is to review recent advances in the study of the molecular mechanisms of PCP action and to describe their implications for the understanding ofschizophrenic pathophysiology. Methoc�: Twenty-five papers were identified that described the clinicaldose and serum and CSF levelsat which PCP induces its psychotomimetic effects. The dose range ofPCP-induced effects were compared to the dose range at which PCP interacts with specific molecular targets and affects neurotransmission. Results: It was found that PCP-induced psychotomimetic effects are associated with submicromolar serum concentrations of PCP. At these concentrations PCP interacts selectively with a specific binding site (PCP receptor) that is associated with the N-methyl-D-aspartate (NMDA)-type excitatory amino acid receptor. Occupation ofits receptor by PCP induces noncompetitive inhibition of NMDA receptor-mediated neurotransmission. Other NMDA antagonists such as the dissociative anesthetic ketamine induce PCP-like neurobehavioral effects in proportion to their potency in binding to the PCP receptor and inducing NMDA receptor inhibition. Conclusions: These findings suggestthat endogenous dysfunction ofNMDA receptor-mediated neurotransmission might contribute to the pathogenesis of schizophrenia. The relative implications of the PCP and amphetamine models ofschizophrenia are discussedin relationship to the diagnosis and etiology of schizophrenia. (Am J Psychiatry1991;148:1301-1308)

2,787 citations


Network Information
Related Topics (5)
Glutamate receptor
33.5K papers, 1.8M citations
96% related
Dopamine
45.7K papers, 2.2M citations
96% related
Dopaminergic
29K papers, 1.4M citations
95% related
Hippocampal formation
30.6K papers, 1.7M citations
95% related
Hippocampus
34.9K papers, 1.9M citations
94% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023284
2022623
2021462
2020443
2019468
2018471