scispace - formally typeset
Search or ask a question
Topic

Noble metal

About: Noble metal is a research topic. Over the lifetime, 15113 publications have been published within this topic receiving 337947 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The latest progress in understanding and exploiting the molecular interactions/reactions of noble metal NCs in their synthesis, self-assembly and application scenarios, based on the typical M(0)@M(i)–SR core–shell structure scheme, where M and SR are the metal atom and thiolate ligand, respectively.
Abstract: Thiolate-protected noble metal (e.g., Au and Ag) nanoclusters (NCs) are ultra-small particles with a core size of less than 3 nm. Due to the strong quantum confinement effects and diverse atomic packing modes in this ultra-small size regime, noble metal NCs exhibit numerous molecule-like optical, magnetic, and electronic properties, making them an emerging family of "metallic molecules". Based on such molecule-like structures and properties, an individual noble metal NC behaves as a molecular entity in many chemical reactions, and exhibits structurally sensitive molecular reactivity to various ions, molecules, and other metal NCs. Although this molecular reactivity determines the application of NCs in various fields such as sensors, biomedicine, and catalysis, there is still a lack of systematic summary of the molecular interaction/reaction fundamentals of noble metal NCs at the molecular and atomic levels in the current literature. Here, we discuss the latest progress in understanding and exploiting the molecular interactions/reactions of noble metal NCs in their synthesis, self-assembly and application scenarios, based on the typical M(0)@M(i)-SR core-shell structure scheme, where M and SR are the metal atom and thiolate ligand, respectively. In particular, the continuous development of synthesis and characterization techniques has enabled noble metal NCs to be produced with molecular purity and atomically precise structural resolution. Such molecular purity and atomically precise structure, coupled with the great help of theoretical calculations, have revealed the active sites in various structural hierarchies of noble metal NCs (e.g., M(0) core, M-S interface, and SR ligand) for their molecular interactions/reactions. The anatomy of such molecular interactions/reactions of noble metal NCs in synthesis, self-assembly, and applications (e.g., sensors, biomedicine, and catalysis) constitutes another center of our discussion. The basis and practicality of the molecular interactions/reactions of noble metal NCs exemplified in this Review may increase the acceptance of metal NCs in various fields.

94 citations

Journal ArticleDOI
TL;DR: In this article, the porous CoxOy nanosheets with N-doping and oxygen vacancies were obtained by etching Co3O4 with NH3 plasma, and the obtained sample has a lower Tafel slope of 68.5mV dec−1 than the pristine CO4 nanoSheets.

94 citations

Journal ArticleDOI
TL;DR: The role of reductants is described, unlocking ligand chemistry, and largely expanding the composition space of noble metal aerogels for high-performance electrocatalysis by developing an efficient method, i.e. the excessive-reductant-directed gelation strategy.
Abstract: Amongst various porous materials, noble metal aerogels attract wide attention due to their concurrently featured catalytic properties and large surface areas. However, insufficient understanding and investigation of key factors (e.g. reductants and ligands) in the fabrication process limits on-target design, impeding material diversity and available applications. Herein, unveiling multiple roles of reductants, we develop an efficient method, i.e. the excessive-reductant-directed gelation strategy. It enables to integrate ligand chemistry for creating gold aerogels with a record-high specific surface area (59.8 m2 g−1), and to expand the composition to all common noble metals. Moreover, we demonstrate impressive electrocatalytic performance of these aerogels for the ethanol oxidation and oxygen evolution reaction, and discover an unconventional organic-ligand-enhancing effect. The present work not only enriches the composition and structural diversity of noble metal aerogels, but also opens up new dimensions for devising efficient electrocatalysts for broad material systems. Non-efficient gelation methods for noble metal particles limit the development of the corresponding gel materials. Here the authors describe the role of reductants, unlocking ligand chemistry, and largely expanding the composition space of noble metal aerogels for high-performance electrocatalysis.

94 citations

Journal ArticleDOI
TL;DR: In this paper, a new single atomic catalyst (SAC), Al doped graphene, for the catalytic oxidation of HCHO molecules was proposed through density function theory (DFT) calculations.

94 citations

Journal ArticleDOI
TL;DR: In this paper, an inexpensive and high-efficiency hydrogen-production cocatalyst to replace the noble metal Pt remains a big challenge in the fields of sustainable photocatalytic hydrogen evolution.
Abstract: Developing an inexpensive and high-efficiency hydrogen-production cocatalyst to replace the noble metal Pt remains a big challenge in the fields of sustainable photocatalytic hydrogen evolution. He...

93 citations


Network Information
Related Topics (5)
Oxide
213.4K papers, 3.6M citations
92% related
Nanoparticle
85.9K papers, 2.6M citations
92% related
Graphene
144.5K papers, 4.9M citations
91% related
Adsorption
226.4K papers, 5.9M citations
91% related
Carbon nanotube
109K papers, 3.6M citations
90% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023485
2022986
2021622
2020724
2019896
2018767