scispace - formally typeset
Search or ask a question
Topic

Noble metal

About: Noble metal is a research topic. Over the lifetime, 15113 publications have been published within this topic receiving 337947 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The present approach exemplifies a totally green synthesis using the plant derived natural product (gum kondagogu) for the production of noble metal nanoparticles and the process can also be extended to the synthesis of other metal oxide nanoparticles.

185 citations

Patent
10 Aug 2004
TL;DR: In this article, an atomic layer deposition method was proposed to produce electrically conductive noble metal thin films on a substrate by using reactions between the metal precursor and oxygen in a reaction chamber.
Abstract: The invention relates generally to processes for producing electrically conductive noble metal thin films on a substrate by atomic layer deposition. According to one embodiment of the invention a substrate with a surface is provided in a reaction chamber and a vaporised precursor of a noble metal is pulsed into the reaction chamber. By contacting the vaporised precursor with the surface of the substrate, no more than about a molecular layer of the metal precursor is formed on the substrate. In a next step, a pulse of molecular oxygen-containing gas is provided in the reaction chamber, where the oxygen reacts with the precursor on the substrate. Thus, high-quality metal thin films can be deposited by utilising reactions between the metal precursor and oxygen. In one embodiment, electrically conductive layers are deposited in structures that have high aspect ratio vias and trenches, local high elevation areas or other similar surface structures that make the surface rough.

185 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe the inexpensive synthesis of electrochemically deposited nickel iron sulphides on nickel foam (NiFeS/NF) and their use as highly efficient bi-functional water splitting catalysts that can meet the current energy demands.
Abstract: Efficient and durable electrocatalysts for water splitting (both the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER)) are required for the replacement of expensive noble metal-based catalysts used in water electrolysis devices. Herein, we describe the inexpensive synthesis of electrochemically deposited nickel iron sulphides on nickel foam (NiFeS/NF) and their use as highly efficient bi-functional water splitting catalysts that can meet the current energy demands. The NiFeS/NF electrocatalysts exhibited low overpotentials of approximately 231 mV for the OER and 180 mV for the HER in 1 M KOH. Moreover, the NiFeS/NF electrocatalysts exhibited a turnover frequency of one order of magnitude higher than those of state-of-the-art noble metal catalysts (RuO2 and Pt/C) for the OER and HER. In addition to this excellent activity, the bi-functional catalyst also exhibited an outstanding OER and HER electrode stability for over 200 h with minimal loss in activity. Further, it can be directly used in the practical application of alkaline electrolyte membrane water electrolysis. The high performance, prolonged electrode stability, and facile synthesis as an adherent coating on nickel foam suggest that NiFeS/NF electrocatalysts might be suitable for use as alternative commercially viable catalysts.

185 citations

Journal ArticleDOI
TL;DR: In this paper, the authors designed a carbon cloth (CC)-supported Earth-abundant Co(OH)2 nanosheets array as an ideal three-dimensional (3D) substrate for Pt electrodeposition.
Abstract: The combinations of Earth-abundant materials with noble metals provide an orientation for developing highly active and stable catalysts toward hydrogen production with reduced noble metal loadings. Here, we designed carbon cloth (CC)-supported Earth-abundant Co(OH)2 nanosheets array (Co(OH)2/CC) as an ideal three-dimensional (3D) substrate for Pt electrodeposition (Pt–Co(OH)2/CC, Pt in Pt–Co(OH)2: 5.7 wt %) to achieve top performance of a hydrogen evolution reaction (HER) under alkaline and neutral conditions. The Pt–Co(OH)2/CC catalyst exhibits a near-zero onset overpotential and a Tafel slope of 70 mV dec–1, and it requires an overpotential of 32, 54, and 122 mV to deliver the geometrical current density of 10, 20, and 100 mA cm–2, respectively, with catalytic activities exceeding to those of the commercial Pt/C decorated CC (Pt/C/CC). Furthermore, the HER activity of Co(OH)2 decorated with several transition metals (Ni, Co, and Fe) was demonstrated in experiments, further validating the high HER activi...

184 citations

Journal ArticleDOI
TL;DR: In this paper, a metal organic framework (MOF) was synthesized through electrochemical route and is used as an effective catalyst for chemical reduction of nitrophenol in the presence of excess NaBH 4.

184 citations


Network Information
Related Topics (5)
Oxide
213.4K papers, 3.6M citations
92% related
Nanoparticle
85.9K papers, 2.6M citations
92% related
Graphene
144.5K papers, 4.9M citations
91% related
Adsorption
226.4K papers, 5.9M citations
91% related
Carbon nanotube
109K papers, 3.6M citations
90% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023485
2022986
2021622
2020724
2019896
2018767