scispace - formally typeset
Topic

Noise

About: Noise is a(n) research topic. Over the lifetime, 5111 publication(s) have been published within this topic receiving 69407 citation(s). The topic is also known as: Мопсы танцуют под радио бандитов из сталкера 10 часов.


Papers
More filters
Proceedings ArticleDOI
02 Apr 1979
TL;DR: This paper describes a method for enhancing speech corrupted by broadband noise based on the spectral noise subtraction method, which can automatically adapt to a wide range of signal-to-noise ratios, as long as a reasonable estimate of the noise spectrum can be obtained.
Abstract: This paper describes a method for enhancing speech corrupted by broadband noise. The method is based on the spectral noise subtraction method. The original method entails subtracting an estimate of the noise power spectrum from the speech power spectrum, setting negative differences to zero, recombining the new power spectrum with the original phase, and then reconstructing the time waveform. While this method reduces the broadband noise, it also usually introduces an annoying "musical noise". We have devised a method that eliminates this "musical noise" while further reducing the background noise. The method consists in subtracting an overestimate of the noise power spectrum, and preventing the resultant spectral components from going below a preset minimum level (spectral floor). The method can automatically adapt to a wide range of signal-to-noise ratios, as long as a reasonable estimate of the noise spectrum can be obtained. Extensive listening tests were performed to determine the quality and intelligibility of speech enhanced by our method. Listeners unanimously preferred the quality of the processed speech. Also, for an input signal-to-noise ratio of 5 dB, there was no loss of intelligibility associated with the enhancement technique.

1,296 citations

PatentDOI
TL;DR: In this article, the authors proposed a method for recognizing audio samples that locates an audio file that most closely matches the audio sample from a database indexing a large set of original recordings, where each indexed audio file is represented in the database index by a set of landmark timepoints and associated fingerprints.
Abstract: A method for recognizing an audio sample locates an audio file that most closely matches the audio sample from a database indexing a large set of original recordings. Each indexed audio file is represented in the database index by a set of landmark timepoints and associated fingerprints. Landmarks occur at reproducible locations within the file, while fingerprints represent features of the signal at or near the landmark timepoints. To perform recognition, landmarks and fingerprints are computed for the unknown sample and used to retrieve matching fingerprints from the database. For each file containing matching fingerprints, the landmarks are compared with landmarks of the sample at which the same fingerprints were computed. If a large number of corresponding landmarks are linearly related, i.e., if equivalent fingerprints of the sample and retrieved file have the same time evolution, then the file is identified with the sample. The method can be used for any type of sound or music, and is particularly effective for audio signals subject to linear and nonlinear distortion such as background noise, compression artifacts, or transmission dropouts. The sample can be identified in a time proportional to the logarithm of the number of entries in the database; given sufficient computational power, recognition can be performed in nearly real time as the sound is being sampled.

774 citations

Proceedings Article
01 Jan 2003
TL;DR: The algorithm is noise and distortion resistant, computationally efficient, and massively scalable, capable of quickly identifying a short segment of music captured through a cellphone microphone in the presence of foreground voices and other dominant noise, out of a database of over a million tracks.
Abstract: We have developed and commercially deployed a flexible audio search engine. The algorithm is noise and distortion resistant, computationally efficient, and massively scalable, capable of quickly identifying a short segment of music captured through a cellphone microphone in the presence of foreground voices and other dominant noise, and through voice codec compression, out of a database of over a million tracks. The algorithm uses a combinatorially hashed time-frequency constellation analysis of the audio, yielding unusual properties such as transparency, in which multiple tracks mixed together may each be identified. Furthermore, for applications such as radio monitoring, search times on the order of a few milliseconds per query are attained, even on a massive music database.

648 citations

01 Jan 1970
TL;DR: In this paper, a book on noise effects on man covering audiometry, aural reflex, hearing damage risk, physiological responses, motor performance and speech communication is presented, with a focus on the effects of noise.
Abstract: Book on noise effects on man covering audiometry, aural reflex, hearing damage risk, physiological responses, motor performance and speech communication

602 citations


Network Information
Related Topics (5)
Speech processing
24.2K papers, 637K citations
73% related
Noise
110.4K papers, 1.3M citations
72% related
Signal processing
73.4K papers, 983.5K citations
69% related
Piston
176.1K papers, 825.4K citations
69% related
Hidden Markov model
28.3K papers, 725.3K citations
67% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20221
2021125
2020217
2019224
2018243
2017214