scispace - formally typeset
Search or ask a question
Topic

Noise (electronics)

About: Noise (electronics) is a research topic. Over the lifetime, 42029 publications have been published within this topic receiving 622342 citations. The topic is also known as: measurement noise.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the behavior of excitable systems driven by Gaussian white noise is reviewed, focusing mainly on those general properties of such systems that are due to noise, and present several applications of their findings in biophysics and lasers.

1,373 citations

Proceedings ArticleDOI
02 Apr 1979
TL;DR: This paper describes a method for enhancing speech corrupted by broadband noise based on the spectral noise subtraction method, which can automatically adapt to a wide range of signal-to-noise ratios, as long as a reasonable estimate of the noise spectrum can be obtained.
Abstract: This paper describes a method for enhancing speech corrupted by broadband noise. The method is based on the spectral noise subtraction method. The original method entails subtracting an estimate of the noise power spectrum from the speech power spectrum, setting negative differences to zero, recombining the new power spectrum with the original phase, and then reconstructing the time waveform. While this method reduces the broadband noise, it also usually introduces an annoying "musical noise". We have devised a method that eliminates this "musical noise" while further reducing the background noise. The method consists in subtracting an overestimate of the noise power spectrum, and preventing the resultant spectral components from going below a preset minimum level (spectral floor). The method can automatically adapt to a wide range of signal-to-noise ratios, as long as a reasonable estimate of the noise spectrum can be obtained. Extensive listening tests were performed to determine the quality and intelligibility of speech enhanced by our method. Listeners unanimously preferred the quality of the processed speech. Also, for an input signal-to-noise ratio of 5 dB, there was no loss of intelligibility associated with the enhancement technique.

1,352 citations

Journal ArticleDOI
TL;DR: A detailed theoretical and numerical study of stochastic resonance, based on a rate equation approach, results in an equation for the output signal-to-noise ratio as a function of the rate at which noise induces hopping between the two states.
Abstract: The concept of stochastic resonance has been introduced previously to describe a curious phenomenon in bistable systems subject to both periodic and random forcing: an increase in the input noise can result in an improvement in the output signal-to-noise ratio. In this paper we present a detailed theoretical and numerical study of stochastic resonance, based on a rate equation approach. The main result is an equation for the output signal-to-noise ratio as a function of the rate at which noise induces hopping between the two states. The manner in which the input noise strength determines this hopping rate depends on the precise nature of the bistable system. For this reason, the theory is applied to two classes of bistable systems, the double-well (continuous) system and the two-state (discrete) system. The theory is tested in detail against digital simulations.

1,231 citations

Journal ArticleDOI
TL;DR: A quantitative comparison with theory suggests that the observed squeezing results from a field that in the absence of linear attenuation would be squeezed by greater then tenfold.
Abstract: Squeezed states of the electromagnetic field are generated by degenerate parametric down conversion in an optical cavity Noise reductions greater than 50% relative to the vacuum noise level are observed in a balanced homodyne detector A quantitative comparison with theory suggests that the observed squeezing results from a field that in the absence of linear attenuation would be squeezed by greater then tenfold

1,225 citations

Journal ArticleDOI
Dieter Weller1, Andreas Moser
TL;DR: In this article, the authors discuss thermal effects in the framework of basic Arrhenius-Neel statistical switching models and reveal the onset of thermal decay at "stability ratios" (k/sub u/V/K/sub B/T)/sub 0//spl sime/35 /spl plusmn/ 2.
Abstract: In current longitudinal magnetic recording media, high areal density and low noise are achieved by statistical averaging over several hundred weakly coupled ferromagnetic grains per bit cell. Continued scaling to smaller bit and grain sizes, however, may prompt spontaneous magnetization reversal processes when the stored energy per particle starts competing with thermal energy, thereby limiting the achievable areal density. Charap et al. have predicted this to occur at about 40 Gbits/in/sup 2/. This paper discusses thermal effects in the framework of basic Arrhenius-Neel statistical switching models. It is emphasized that magnetization decay is intimately related to high-speed-switching phenomena. Thickness-, temperature- and bit-density dependent recording experiments reveal the onset of thermal decay at "stability ratios" (K/sub u/V/K/sub B/T)/sub 0//spl sime/35 /spl plusmn/ 2. The stability requirement is grain size dispersion dependent and shifts to about 60 for projected 40 Gbits/in/sup 2/ conditions and ten-year storage times. Higher anisotropy and coercivity media with reduced grain sizes are logical extensions of the current technology until write field limitations are reached. Future advancements will rely on deviations from traditional scaling. Squarer bits may reduce destabilizing stray fields inside the bit transitions. Perpendicular recording may shift the onset of thermal effects to higher bit densities. Enhanced signal processing may allow signal retrieval with fewer grains per bit. Finally, single grain per bit recording may be envisioned in patterned media, with lithographically defined bits.

1,223 citations


Network Information
Related Topics (5)
Transistor
138K papers, 1.4M citations
85% related
Electric field
87.1K papers, 1.4M citations
84% related
Dielectric
169.7K papers, 2.7M citations
83% related
Silicon
196K papers, 3M citations
83% related
Scattering
152.3K papers, 3M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202218
20211,494
20201,388
20191,398
20181,455
20171,544