scispace - formally typeset
Search or ask a question
Topic

Noise figure

About: Noise figure is a research topic. Over the lifetime, 17921 publications have been published within this topic receiving 236614 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a 1.5 GHz low noise amplifier (LNA) intended for use in a global positioning system (GPS) receiver, has been implemented in a standard 0.6/spl mu/m CMOS process.
Abstract: A 1.5-GHz low noise amplifier (LNA), intended for use in a global positioning system (GPS) receiver, has been implemented in a standard 0.6-/spl mu/m CMOS process. The amplifier provides a forward gain (S21) of 22 dB with a noise figure of only 3.5 dB while drawing 30 mW from a 1.5 V supply. In this paper, we present a detailed analysis of the LNA architecture, including a discussion on the effects of induced gate noise in MOS devices.

1,463 citations

Proceedings ArticleDOI
02 Apr 1979
TL;DR: This paper describes a method for enhancing speech corrupted by broadband noise based on the spectral noise subtraction method, which can automatically adapt to a wide range of signal-to-noise ratios, as long as a reasonable estimate of the noise spectrum can be obtained.
Abstract: This paper describes a method for enhancing speech corrupted by broadband noise. The method is based on the spectral noise subtraction method. The original method entails subtracting an estimate of the noise power spectrum from the speech power spectrum, setting negative differences to zero, recombining the new power spectrum with the original phase, and then reconstructing the time waveform. While this method reduces the broadband noise, it also usually introduces an annoying "musical noise". We have devised a method that eliminates this "musical noise" while further reducing the background noise. The method consists in subtracting an overestimate of the noise power spectrum, and preventing the resultant spectral components from going below a preset minimum level (spectral floor). The method can automatically adapt to a wide range of signal-to-noise ratios, as long as a reasonable estimate of the noise spectrum can be obtained. Extensive listening tests were performed to determine the quality and intelligibility of speech enhanced by our method. Listeners unanimously preferred the quality of the processed speech. Also, for an input signal-to-noise ratio of 5 dB, there was no loss of intelligibility associated with the enhancement technique.

1,352 citations

Journal ArticleDOI
Behzad Razavi1
TL;DR: In this paper, the phase noise in two inductorless CMOS oscillators is analyzed and a new definition of phase noise is defined, and two prototypes fabricated in a 0.5/spl mu/m CMOS technology are used to investigate the accuracy of the theoretical predictions.
Abstract: This paper presents a study of phase noise in two inductorless CMOS oscillators. First-order analysis of a linear oscillatory system leads to a noise shaping function and a new definition of Q. A linear model of CMOS ring oscillators is used to calculate their phase noise, and three phase noise phenomena, namely, additive noise, high-frequency multiplicative noise, and low-frequency multiplicative noise, are identified and formulated. Based on the same concepts, a CMOS relaxation oscillator is also analyzed. Issues and techniques related to simulation of noise in the time domain are described, and two prototypes fabricated in a 0.5-/spl mu/m CMOS technology are used to investigate the accuracy of the theoretical predictions. Compared with the measured results, the calculated phase noise values of a 2-GHz ring oscillator and a 900-MHz relaxation oscillator at 5 MHz offset have an error of approximately 4 dB.

1,012 citations

Journal ArticleDOI
TL;DR: A statistical model of the time behavior of random impulsive noise based on a partitioned Markov chain is developed, which is suitable for implementation in computer-based communication system simulations.
Abstract: Contrary to many other communication channels, the powerline channel does not represent an additive white Gaussian noise environment. In the frequency range from several hundred kilohertz up to 20 MHz, it is mostly dominated by narrow-band interference and impulsive noise. In particular, the impulsive noise introduces significant time variance into the powerline channel. Spectral analysis and time-domain analysis of impulsive noise give some figures of the power spectral density as well as distributions of amplitude, impulse width, and "interarrival" times in typical powerline scenarios. Furthermore, the impulse rate and the disturbance ratio of the scenarios are examined. Finally, a statistical model of the time behavior of random impulsive noise based on a partitioned Markov chain is developed, which is suitable for implementation in computer-based communication system simulations.

965 citations

Journal ArticleDOI
N.A. Olsson1
TL;DR: In this article, the noise and bit-error-rate characteristics of fiber-optic communication systems using semiconductor laser amplifiers are investigated theoretically and experimentally, and the dependence of system performance on amplifier characteristics such as optical bandwidth, noise figure, gain, etc., is shown.
Abstract: Fiber-optic communication systems using semiconductor laser amplifiers are investigated theoretically and experimentally. The noise and bit-error-rate characteristics of lightwave systems with optical amplifiers are calculated and the dependence of system performance on amplifier characteristics such as optical bandwidth, noise figure, gain, etc., is shown. Experimental results for both a 4-Gb/s optical preamplifier as well as coherent and direct detection systems with four inline amplifiers are presented. >

899 citations


Network Information
Related Topics (5)
Amplifier
163.9K papers, 1.3M citations
93% related
CMOS
81.3K papers, 1.1M citations
90% related
Integrated circuit
82.7K papers, 1M citations
88% related
Resonator
76.5K papers, 1M citations
88% related
Transistor
138K papers, 1.4M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023130
2022362
2021359
2020408
2019497
2018460