Topic

# Noise measurement

About: Noise measurement is a(n) research topic. Over the lifetime, 19776 publication(s) have been published within this topic receiving 308180 citation(s).

##### Papers published on a yearly basis

##### Papers

More filters

••

20 Jun 2005TL;DR: A new measure, the method noise, is proposed, to evaluate and compare the performance of digital image denoising methods, and a new algorithm, the nonlocal means (NL-means), based on a nonlocal averaging of all pixels in the image is proposed.

Abstract: We propose a new measure, the method noise, to evaluate and compare the performance of digital image denoising methods. We first compute and analyze this method noise for a wide class of denoising algorithms, namely the local smoothing filters. Second, we propose a new algorithm, the nonlocal means (NL-means), based on a nonlocal averaging of all pixels in the image. Finally, we present some experiments comparing the NL-means algorithm and the local smoothing filters.

5,832 citations

••

TL;DR: A stand-alone noise suppression algorithm that resynthesizes a speech waveform and can be used as a pre-processor to narrow-band voice communications systems, speech recognition systems, or speaker authentication systems.

Abstract: A stand-alone noise suppression algorithm is presented for reducing the spectral effects of acoustically added noise in speech. Effective performance of digital speech processors operating in practical environments may require suppression of noise from the digital wave-form. Spectral subtraction offers a computationally efficient, processor-independent approach to effective digital speech analysis. The method, requiring about the same computation as high-speed convolution, suppresses stationary noise from speech by subtracting the spectral noise bias calculated during nonspeech activity. Secondary procedures are then applied to attenuate the residual noise left after subtraction. Since the algorithm resynthesizes a speech waveform, it can be used as a pre-processor to narrow-band voice communications systems, speech recognition systems, or speaker authentication systems.

4,550 citations

••

24 Mar 1975TL;DR: It is shown that in treating periodic interference the adaptive noise canceller acts as a notch filter with narrow bandwidth, infinite null, and the capability of tracking the exact frequency of the interference; in this case the canceller behaves as a linear, time-invariant system, with the adaptive filter converging on a dynamic rather than a static solution.

Abstract: This paper describes the concept of adaptive noise cancelling, an alternative method of estimating signals corrupted by additive noise or interference. The method uses a "primary" input containing the corrupted signal and a "reference" input containing noise correlated in some unknown way with the primary noise. The reference input is adaptively filtered and subtracted from the primary input to obtain the signal estimate. Adaptive filtering before subtraction allows the treatment of inputs that are deterministic or stochastic, stationary or time variable. Wiener solutions are developed to describe asymptotic adaptive performance and output signal-to-noise ratio for stationary stochastic inputs, including single and multiple reference inputs. These solutions show that when the reference input is free of signal and certain other conditions are met noise in the primary input can be essentiany eliminated without signal distortion. It is further shown that in treating periodic interference the adaptive noise canceller acts as a notch filter with narrow bandwidth, infinite null, and the capability of tracking the exact frequency of the interference; in this case the canceller behaves as a linear, time-invariant system, with the adaptive filter converging on a dynamic rather than a static solution. Experimental results are presented that illustrate the usefulness of the adaptive noise cancelling technique in a variety of practical applications. These applications include the cancelling of various forms of periodic interference in electrocardiography, the cancelling of periodic interference in speech signals, and the cancelling of broad-band interference in the side-lobes of an antenna array. In further experiments it is shown that a sine wave and Gaussian noise can be separated by using a reference input that is a delayed version of the primary input. Suggested applications include the elimination of tape hum or turntable rumble during the playback of recorded broad-band signals and the automatic detection of very-low-level periodic signals masked by broad-band noise.

4,091 citations

••

TL;DR: In this paper, a general model is introduced which is capable of making accurate, quantitative predictions about the phase noise of different types of electrical oscillators by acknowledging the true periodically time-varying nature of all oscillators.

Abstract: A general model is introduced which is capable of making accurate, quantitative predictions about the phase noise of different types of electrical oscillators by acknowledging the true periodically time-varying nature of all oscillators. This new approach also elucidates several previously unknown design criteria for reducing close-in phase noise by identifying the mechanisms by which intrinsic device noise and external noise sources contribute to the total phase noise. In particular, it explains the details of how 1/f noise in a device upconverts into close-in phase noise and identifies methods to suppress this upconversion. The theory also naturally accommodates cyclostationary noise sources, leading to additional important design insights. The model reduces to previously available phase noise models as special cases. Excellent agreement among theory, simulations, and measurements is observed.

2,180 citations

••

Duke University

^{1}TL;DR: The underlying theory, an associated algorithm, example results, and comparisons to other compressive-sensing inversion algorithms in the literature are presented.

Abstract: The data of interest are assumed to be represented as N-dimensional real vectors, and these vectors are compressible in some linear basis B, implying that the signal can be reconstructed accurately using only a small number M Lt N of basis-function coefficients associated with B. Compressive sensing is a framework whereby one does not measure one of the aforementioned N-dimensional signals directly, but rather a set of related measurements, with the new measurements a linear combination of the original underlying N-dimensional signal. The number of required compressive-sensing measurements is typically much smaller than N, offering the potential to simplify the sensing system. Let f denote the unknown underlying N-dimensional signal, and g a vector of compressive-sensing measurements, then one may approximate f accurately by utilizing knowledge of the (under-determined) linear relationship between f and g, in addition to knowledge of the fact that f is compressible in B. In this paper we employ a Bayesian formalism for estimating the underlying signal f based on compressive-sensing measurements g. The proposed framework has the following properties: i) in addition to estimating the underlying signal f, "error bars" are also estimated, these giving a measure of confidence in the inverted signal; ii) using knowledge of the error bars, a principled means is provided for determining when a sufficient number of compressive-sensing measurements have been performed; iii) this setting lends itself naturally to a framework whereby the compressive sensing measurements are optimized adaptively and hence not determined randomly; and iv) the framework accounts for additive noise in the compressive-sensing measurements and provides an estimate of the noise variance. In this paper we present the underlying theory, an associated algorithm, example results, and provide comparisons to other compressive-sensing inversion algorithms in the literature.

1,990 citations