scispace - formally typeset
Search or ask a question
Topic

Noise measurement

About: Noise measurement is a research topic. Over the lifetime, 19776 publications have been published within this topic receiving 308180 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a dual-chopper amplifier and its application to monolithic complementary metal-oxide semiconductor-microelectromechanical systems accelerometers is presented. But the authors focus on the power consumption and noise.
Abstract: This paper reports a novel dual-chopper amplifier (DCA) and its application to monolithic complementary metal-oxide semiconductor-microelectromechanical systems accelerometers. The DCA design minimizes the power consumption and noise by chopping the sensing signals at two clocks. The first clock is a high frequency for removing the flicker noise while the second clock is a significantly lower frequency to keep the unit gain bandwidth low. A monolithic three-axis accelerometer integrated with the DCA on the same chip has been successfully fabricated using a post-CMOS micromachining process. The measured noise floors are 40 μ g/√Hz in the x - and y -axis and 130 μ g/√Hz in the z -axis, and the power consumption is about 1 mW per axis.

81 citations

Proceedings ArticleDOI
25 Mar 2012
TL;DR: A novel dual-channel noise reduction algorithm with key components are a noise PSD estimator and an improved spectral weighting rule which both explicitly exploit the Power Level Differences of the desired speech signal between the microphones.
Abstract: This paper discusses the application of noise reduction algorithms for dual-microphone mobile phones. An analysis of the acoustical environment based on recordings with a dual-microphone mock-up phone mounted on a dummy head is given. Motivated by the recordings, a novel dual-channel noise reduction algorithm is proposed. The key components are a noise PSD estimator and an improved spectral weighting rule which both explicitly exploit the Power Level Differences (PLD) of the desired speech signal between the microphones. Experiments with recorded data show that this low complexity system has a good performance and is beneficial for an integration into future mobile communication devices.

81 citations

PatentDOI
TL;DR: In this paper, a method and system for adaptively reducing noise in frames of digitized audio signals that may include both speech and background noise is presented, where the attenuation applied to the audio frames is modified gradually on a frame-by-frame basis, each sample in a specific frame is attenuated using the value calculated for that frame.
Abstract: A method and system are provided for adaptively reducing noise in frames of digitized audio signals that may include both speech and background noise. Frames of digitized audio signals are processed to determine what attenuation (if any) should be applied to the current frame of digitized audio signals. Initially it is determined whether the current frame of digitized audio signals includes speech information, this determination being based upon an estimate of noise and on a speech threshold value. An attenuation value determined for the previous audio frame is modified based on this determination and applied to the current frame in order to minimize the background noise which thereby improves the quality of received speech. The attenuation applied to the audio frames is modified gradually on a frame-by-frame basis, each sample in a specific frame is attenuated using the value calculated for that frame. The adaptive noise reduction system may be advantageously applied to telecommunication systems in which portable radio transceivers communicate over RF channels because the adaptive noise reduction technique does not significantly increase data processing overhead.

81 citations

Proceedings ArticleDOI
26 Apr 2009
TL;DR: In this paper, the authors extracted the characteristic capture and emission time constants from RTN in highly scaled nMOSFETs and showed that they are inconsistent with the elastic tunneling picture dictated by the physical thickness of the gate dielectric (1.4 nm).
Abstract: Recently, 1/f and random telegraph noise (RTN) studies have been used to infer information about bulk dielectric defects' spatial and energetic distributions. These analyses rely on a noise framework which involves charge exchange between the inversion layer and the bulk dielectric defects via elastic tunneling. In this study, we extracted the characteristic capture and emission time constants from RTN in highly scaled nMOSFETs and showed that they are inconsistent with the elastic tunneling picture dictated by the physical thickness of the gate dielectric (1.4 nm). Consequently, our results suggest that an alternative model is required and that a large body of the recent RTN and 1/ƒ noise defect profiling literature very likely needs to be re-interpreted.

81 citations

Journal ArticleDOI
TL;DR: Having such properties, the proposed unbiased FIR filter fits well slowly changing with time models and is optimal in the sense of zero bias and zero noise.
Abstract: We address an unbiased finite impulse response (FIR) filter for discrete-time state-space models with polynomial representation of the states. The unique l-degree polynomial FIR filter gain and the estimate variance are found for a general case. The noise power gain (NG) is derived for white Gaussian noises in the model and in the measurement. The filter does not involve any knowledge about noise in the algorithm. It is unstable at short horizons, 2 les N les l, and inefficient (NG exceeds unity) in the narrow range l 1, the estimate noise becomes negligible and the filter thus optimal in the sense of zero bias and zero noise. Having such properties, the proposed unbiased FIR filter fits well slowly changing with time models. An example is given for a two-state system.

81 citations


Network Information
Related Topics (5)
Feature extraction
111.8K papers, 2.1M citations
88% related
Convolutional neural network
74.7K papers, 2M citations
84% related
Deep learning
79.8K papers, 2.1M citations
84% related
Artificial neural network
207K papers, 4.5M citations
83% related
Wireless
133.4K papers, 1.9M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202377
2022162
2021495
2020525
2019489
2018755