Topic

# Noise reduction

About: Noise reduction is a(n) research topic. Over the lifetime, 25121 publication(s) have been published within this topic receiving 300815 citation(s). The topic is also known as: denoising & noise removal.

##### Papers published on a yearly basis

##### Papers

More filters

••

20 Jun 2005TL;DR: A new measure, the method noise, is proposed, to evaluate and compare the performance of digital image denoising methods, and a new algorithm, the nonlocal means (NL-means), based on a nonlocal averaging of all pixels in the image is proposed.

Abstract: We propose a new measure, the method noise, to evaluate and compare the performance of digital image denoising methods. We first compute and analyze this method noise for a wide class of denoising algorithms, namely the local smoothing filters. Second, we propose a new algorithm, the nonlocal means (NL-means), based on a nonlocal averaging of all pixels in the image. Finally, we present some experiments comparing the NL-means algorithm and the local smoothing filters.

5,832 citations

••

TL;DR: Zhang et al. as mentioned in this paper proposed a feed-forward denoising convolutional neural networks (DnCNNs) to handle Gaussian denobling with unknown noise level.

Abstract: The discriminative model learning for image denoising has been recently attracting considerable attentions due to its favorable denoising performance. In this paper, we take one step forward by investigating the construction of feed-forward denoising convolutional neural networks (DnCNNs) to embrace the progress in very deep architecture, learning algorithm, and regularization method into image denoising. Specifically, residual learning and batch normalization are utilized to speed up the training process as well as boost the denoising performance. Different from the existing discriminative denoising models which usually train a specific model for additive white Gaussian noise at a certain noise level, our DnCNN model is able to handle Gaussian denoising with unknown noise level (i.e., blind Gaussian denoising). With the residual learning strategy, DnCNN implicitly removes the latent clean image in the hidden layers. This property motivates us to train a single DnCNN model to tackle with several general image denoising tasks, such as Gaussian denoising, single image super-resolution, and JPEG image deblocking. Our extensive experiments demonstrate that our DnCNN model can not only exhibit high effectiveness in several general image denoising tasks, but also be efficiently implemented by benefiting from GPU computing.

3,742 citations

••

TL;DR: Experimental results show that in most cases the techniques developed in this paper are readily adaptable to real-time image processing.

Abstract: Computational techniques involving contrast enhancement and noise filtering on two-dimensional image arrays are developed based on their local mean and variance. These algorithms are nonrecursive and do not require the use of any kind of transform. They share the same characteristics in that each pixel is processed independently. Consequently, this approach has an obvious advantage when used in real-time digital image processing applications and where a parallel processor can be used. For both the additive and multiplicative cases, the a priori mean and variance of each pixel is derived from its local mean and variance. Then, the minimum mean-square error estimator in its simplest form is applied to obtain the noise filtering algorithms. For multiplicative noise a statistical optimal linear approximation is made. Experimental results show that such an assumption yields a very effective filtering algorithm. Examples on images containing 256 × 256 pixels are given. Results show that in most cases the techniques developed in this paper are readily adaptable to real-time image processing.

2,513 citations

••

TL;DR: In this paper, a transformation known as the maximum noise fraction (MNF) transformation is presented, which always produces new components ordered by image quality, and it can be shown that this transformation is equivalent to principal components transformations when the noise variance is the same in all bands and that it reduces to a multiple linear regression when noise is in one band only.

Abstract: A transformation known as the maximum noise fraction (MNF) transformation, which always produces new components ordered by image quality, is presented. It can be shown that this transformation is equivalent to principal components transformations when the noise variance is the same in all bands and that it reduces to a multiple linear regression when noise is in one band only. Noise can be effectively removed from multispectral data by transforming to the MNF space, smoothing or rejecting the most noisy components, and then retransforming to the original space. In this way, more intense smoothing can be applied to the MNF components with high noise and low signal content than could be applied to each band of the original data. The MNF transformation requires knowledge of both the signal and noise covariance matrices. Except when the noise is in one band only, the noise covariance matrix needs to be estimated. One procedure for doing this is discussed and examples of cleaned images are presented. >

2,407 citations

••

TL;DR: The performance of this method for removing noise from digital images substantially surpasses that of previously published methods, both visually and in terms of mean squared error.

Abstract: We describe a method for removing noise from digital images, based on a statistical model of the coefficients of an overcomplete multiscale oriented basis. Neighborhoods of coefficients at adjacent positions and scales are modeled as the product of two independent random variables: a Gaussian vector and a hidden positive scalar multiplier. The latter modulates the local variance of the coefficients in the neighborhood, and is thus able to account for the empirically observed correlation between the coefficient amplitudes. Under this model, the Bayesian least squares estimate of each coefficient reduces to a weighted average of the local linear estimates over all possible values of the hidden multiplier variable. We demonstrate through simulations with images contaminated by additive white Gaussian noise that the performance of this method substantially surpasses that of previously published methods, both visually and in terms of mean squared error.

2,342 citations