scispace - formally typeset
Search or ask a question
Topic

Noise reduction

About: Noise reduction is a research topic. Over the lifetime, 25121 publications have been published within this topic receiving 300815 citations. The topic is also known as: denoising & noise removal.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper proposes a patch-based Wiener filter that exploits patch redundancy for image denoising that is on par or exceeding the current state of the art, both visually and quantitatively.
Abstract: In this paper, we propose a denoising method motivated by our previous analysis of the performance bounds for image denoising. Insights from that study are used here to derive a high-performance practical denoising algorithm. We propose a patch-based Wiener filter that exploits patch redundancy for image denoising. Our framework uses both geometrically and photometrically similar patches to estimate the different filter parameters. We describe how these parameters can be accurately estimated directly from the input noisy image. Our denoising approach, designed for near-optimal performance (in the mean-squared error sense), has a sound statistical foundation that is analyzed in detail. The performance of our approach is experimentally verified on a variety of images and noise levels. The results presented here demonstrate that our proposed method is on par or exceeding the current state of the art, both visually and quantitatively.

320 citations

Journal ArticleDOI
TL;DR: The exact unbiased inverse of the Anscombe transformation is introduced and it is demonstrated that this exact inverse leads to state-of-the-art results without any notable increase in the computational complexity compared to the other inverses.
Abstract: Many digital imaging devices operate by successive photon-to-electron, electron-to-voltage, and voltage-to-digit conversions. These processes are subject to various signal-dependent errors, which are typically modeled as Poisson-Gaussian noise. The removal of such noise can be effected indirectly by applying a variance-stabilizing transformation (VST) to the noisy data, denoising the stabilized data with a Gaussian denoising algorithm, and finally applying an inverse VST to the denoised data. The generalized Anscombe transformation (GAT) is often used for variance stabilization, but its unbiased inverse transformation has not been rigorously studied in the past. We introduce the exact unbiased inverse of the GAT and show that it plays an integral part in ensuring accurate denoising results. We demonstrate that this exact inverse leads to state-of-the-art results without any notable increase in the computational complexity compared to the other inverses. We also show that this inverse is optimal in the sense that it can be interpreted as a maximum likelihood inverse. Moreover, we thoroughly analyze the behavior of the proposed inverse, which also enables us to derive a closed-form approximation for it. This paper generalizes our work on the exact unbiased inverse of the Anscombe transformation, which we have presented earlier for the removal of pure Poisson noise.

320 citations

Journal ArticleDOI
TL;DR: This work formally shows that the minimum variance distortionless response (MVDR) filter is a particular case of the PMWF by properly formulating the constrained optimization problem of noise reduction, and proposes new simplified expressions for thePMWF, the MVDR, and the generalized sidelobe canceller that depend on the signals' statistics only.
Abstract: Several contributions have been made so far to develop optimal multichannel linear filtering approaches and show their ability to reduce the acoustic noise. However, there has not been a clear unifying theoretical analysis of their performance in terms of both noise reduction and speech distortion. To fill this gap, we analyze the frequency-domain (non-causal) multichannel linear filtering for noise reduction in this paper. For completeness, we consider the noise reduction constrained optimization problem that leads to the parameterized multichannel non-causal Wiener filter (PMWF). Our contribution is fivefold. First, we formally show that the minimum variance distortionless response (MVDR) filter is a particular case of the PMWF by properly formulating the constrained optimization problem of noise reduction. Second, we propose new simplified expressions for the PMWF, the MVDR, and the generalized sidelobe canceller (GSC) that depend on the signals' statistics only. In contrast to earlier works, these expressions are explicitly independent of the channel transfer function ratios. Third, we quantify the theoretical gains and losses in terms of speech distortion and noise reduction when using the PWMF by establishing new simplified closed-form expressions for three performance measures, namely, the signal distortion index, the noise reduction factor (originally proposed in the paper titled ldquoNew insights into the noise reduction Wiener filter,rdquo by J. Chen (IEEE Transactions on Audio, Speech, and Language Processing, Vol. 15, no. 4, pp. 1218-1234, Jul. 2006) to analyze the single channel time-domain Wiener filter), and the output signal-to-noise ratio (SNR). Fourth, we analyze the effects of coherent and incoherent noise in addition to the benefits of utilizing multiple microphones. Fifth, we propose a new proof for the a posteriori SNR improvement achieved by the PMWF. Finally, we provide some simulations results to corroborate the findings of this work.

317 citations

Proceedings ArticleDOI
31 Oct 1993
TL;DR: An adaptive Gaussian filtering algorithm is proposed in which the filter variance is adapted to both the noise characteristics and the local variance of the signal.
Abstract: Gaussian filtering has been intensively studied in image processing and computer vision. Using a Gaussian filter for noise suppression, the noise is smoothed out, at the same time the signal is also distorted. The use of a Gaussian filter as pre-processing for edge detection will also give rise to edge position displacement, edges vanishing, and phantom edges. Here, the authors first review various techniques for these problems. They then propose an adaptive Gaussian filtering algorithm in which the filter variance is adapted to both the noise characteristics and the local variance of the signal. >

316 citations

Journal ArticleDOI
TL;DR: A set of experiments shows that the proposed method, which is named MIDAL (multiplicative image denoising by augmented Lagrangian), yields state-of-the-art results both in terms of speed and Denoising performance.
Abstract: Multiplicative noise (also known as speckle noise) models are central to the study of coherent imaging systems, such as synthetic aperture radar and sonar, and ultrasound and laser imaging. These models introduce two additional layers of difficulties with respect to the standard Gaussian additive noise scenario: (1) the noise is multiplied by (rather than added to) the original image; (2) the noise is not Gaussian, with Rayleigh and Gamma being commonly used densities. These two features of multiplicative noise models preclude the direct application of most state-of-the-art algorithms, which are designed for solving unconstrained optimization problems where the objective has two terms: a quadratic data term (log-likelihood), reflecting the additive and Gaussian nature of the noise, plus a convex (possibly nonsmooth) regularizer (e.g., a total variation or wavelet-based regularizer/prior). In this paper, we address these difficulties by: (1) converting the multiplicative model into an additive one by taking logarithms, as proposed by some other authors; (2) using variable splitting to obtain an equivalent constrained problem; and (3) dealing with this optimization problem using the augmented Lagrangian framework. A set of experiments shows that the proposed method, which we name MIDAL (multiplicative image denoising by augmented Lagrangian), yields state-of-the-art results both in terms of speed and denoising performance.

315 citations


Network Information
Related Topics (5)
Image processing
229.9K papers, 3.5M citations
90% related
Feature extraction
111.8K papers, 2.1M citations
89% related
Image segmentation
79.6K papers, 1.8M citations
88% related
Convolutional neural network
74.7K papers, 2M citations
88% related
Support vector machine
73.6K papers, 1.7M citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,511
20222,974
20211,123
20201,488
20191,702
20181,631