scispace - formally typeset
Search or ask a question
Topic

Noise reduction

About: Noise reduction is a research topic. Over the lifetime, 25121 publications have been published within this topic receiving 300815 citations. The topic is also known as: denoising & noise removal.


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown analytically that noise reduction in the presence of positive feedback results from improved averaging of rapid fluctuations over time, and a particular implementation in the control of nutrient homeostasis in yeast is discussed.
Abstract: Interactions between genes and proteins are crucial for efficient processing of internal or external signals, but this connectivity also amplifies stochastic fluctuations by propagating noise between components. Linear (unbranched) cascades were shown to exhibit an interplay between the sensitivity to changes in input signals and the ability to buffer noise. We searched for biological circuits that can maintain signaling sensitivity while minimizing noise propagation, focusing on cases where the noise is characterized by rapid fluctuations. Negative feedback can buffer this type of noise, but this buffering comes at the expense of an even greater reduction in signaling sensitivity. By systematically analyzing three-component circuits, we identify positive feedback as a central motif allowing for the buffering of propagated noise while maintaining sensitivity to long-term changes in input signals. We show analytically that noise reduction in the presence of positive feedback results from improved averaging of rapid fluctuations over time, and discuss in detail a particular implementation in the control of nutrient homeostasis in yeast. As the design of biological networks optimizes for multiple constraints, positive feedback can be used to improve sensitivity without a compromise in the ability to buffer propagated noise.

212 citations

Journal ArticleDOI
TL;DR: An algorithm for removing environmental noise from neurophysiological recordings such as magnetoencephalography (MEG) improves the value of data recorded in health and scientific applications by suppressing harmful noise, and reduces the need for deleterious spatial or spectral filtering.

212 citations

Journal ArticleDOI
TL;DR: The paper describes the MIC algorithm in detail, discusses the effects of parametric variations, presents the results of a noise analysis and shows a number of examples of its use, including the removal of scanner noise.
Abstract: Morphological openings and closings are useful for the smoothing of gray-scale images. However, their use for image noise reduction is limited by their tendency to remove important, thin features from an image along with the noise. The paper presents a description and analysis of a new morphological image cleaning algorithm (MIC) that preserves thin features while removing noise. MIC is useful for gray-scale images corrupted by dense, low-amplitude, random, or patterned noise. Such noise is typical of scanned or still-video images. MIC differs from previous morphological noise filters in that it manipulates residual images-the differences between the original image and morphologically smoothed versions. It calculates residuals on a number of different scales via a morphological size distribution. It discards regions in the various residuals that it judges to contain noise. MIC creates a cleaned image by recombining the processed residual images with a smoothed version. The paper describes the MIC algorithm in detail, discusses the effects of parametric variations, presents the results of a noise analysis and shows a number of examples of its use, including the removal of scanner noise. It also demonstrates that MIC significantly improves the JPEG compression of a gray-scale image. >

212 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the noise reduction effect of 35 evergreen tree belts and found a negative logarithmic relationship between the visibility and relative attenuation, and a positive log-arithm relationship between attenuation and the width, length or height of the tee belts.

211 citations

Journal ArticleDOI
TL;DR: An overview of the techniques developed in the past decade for hyperspectral image noise reduction is provided, and the performance of these techniques by applying them as a preprocessing step to improve a hyperspectrals image analysis task, i.e., classification.
Abstract: Hyperspectral remote sensing is based on measuring the scattered and reflected electromagnetic signals from the Earth’s surface emitted by the Sun. The received radiance at the sensor is usually degraded by atmospheric effects and instrumental (sensor) noises which include thermal (Johnson) noise, quantization noise, and shot (photon) noise. Noise reduction is often considered as a preprocessing step for hyperspectral imagery. In the past decade, hyperspectral noise reduction techniques have evolved substantially from two dimensional bandwise techniques to three dimensional ones, and varieties of low-rank methods have been forwarded to improve the signal to noise ratio of the observed data. Despite all the developments and advances, there is a lack of a comprehensive overview of these techniques and their impact on hyperspectral imagery applications. In this paper, we address the following two main issues; (1) Providing an overview of the techniques developed in the past decade for hyperspectral image noise reduction; (2) Discussing the performance of these techniques by applying them as a preprocessing step to improve a hyperspectral image analysis task, i.e., classification. Additionally, this paper discusses about the hyperspectral image modeling and denoising challenges. Furthermore, different noise types that exist in hyperspectral images have been described. The denoising experiments have confirmed the advantages of the use of low-rank denoising techniques compared to the other denoising techniques in terms of signal to noise ratio and spectral angle distance. In the classification experiments, classification accuracies have improved when denoising techniques have been applied as a preprocessing step.

208 citations


Network Information
Related Topics (5)
Image processing
229.9K papers, 3.5M citations
90% related
Feature extraction
111.8K papers, 2.1M citations
89% related
Image segmentation
79.6K papers, 1.8M citations
88% related
Convolutional neural network
74.7K papers, 2M citations
88% related
Support vector machine
73.6K papers, 1.7M citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,511
20222,974
20211,123
20201,488
20191,702
20181,631