scispace - formally typeset
Search or ask a question
Topic

Noise reduction

About: Noise reduction is a research topic. Over the lifetime, 25121 publications have been published within this topic receiving 300815 citations. The topic is also known as: denoising & noise removal.


Papers
More filters
Patent
Ankur Varma1, Dinei Florencio1
25 Apr 2003
TL;DR: In this paper, an array of one or more microphones is used to selectively eliminate noise emanating from known, generally fixed locations, and pass signals from a pre-specified region or regions with reduced distortion.
Abstract: Various embodiments reduce noise within a particular environment, while isolating and capturing speech in a manner that allows operation within an otherwise noisy environment. In one embodiment, an array of one or more microphones is used to selectively eliminate noise emanating from known, generally fixed locations, and pass signals from a pre-specified region or regions with reduced distortion.

188 citations

Journal ArticleDOI
TL;DR: The adaptive process is considerably simplified by designing the notch filters by pole-zero placement on the unit circle using some suggested rules, and a constrained least mean-squared algorithm is used for the adaptive process.
Abstract: Investigates adaptive digital notch filters for the elimination of powerline noise from biomedical signals. Since the distribution of the frequency variation of the powerline noise may or may not be centered at 60 Hz. Three different adaptive digital notch filters are considered. For the first case, an adaptive FIR second-order digital notch filter is designed to track the center frequency variation. For the second case, the zeroes of an adaptive IIR second-order digital notch filter are fixed on the unit circle and the poles are adapted to find an optimum bandwidth to eliminate the noise to a pre-defined attenuation level. In the third case, both the poles and zeroes of the adaptive IIR second-order filter are adapted to track the center frequency variation within an optimum bandwidth. The adaptive process is considerably simplified by designing the notch filters by pole-zero placement on the unit circle using some suggested rules. A constrained least mean-squared algorithm is used for the adaptive process. To evaluate their performance, the three adaptive notch filters are applied to a powerline noise sample and to a noisy EEG as an illustration of a biomedical signal. >

187 citations

Journal ArticleDOI
TL;DR: This work develops a simple data‐driven method for removing outliers and reducing noise in unordered point clouds using a deep learning architecture adapted from PCPNet, which was recently proposed for estimating local 3D shape properties in point clouds.
Abstract: Point clouds obtained with 3D scanners or by image-based reconstruction techniques are often corrupted with significant amount of noise and outliers. Traditional methods for point cloud denoising largely rely on local surface fitting (e.g. jets or MLS surfaces), local or non-local averaging or on statistical assumptions about the underlying noise model. In contrast, we develop a simple data-driven method for removing outliers and reducing noise in unordered point clouds. We base our approach on a deep learning architecture adapted from PCPNet, which was recently proposed for estimating local 3D shape properties in point clouds. Our method first classifies and discards outlier samples, and then estimates correction vectors that project noisy points onto the original clean surfaces. The approach is efficient and robust to varying amounts of noise and outliers, while being able to handle large densely sampled point clouds. In our extensive evaluation, both on synthetic and real data, we show an increased robustness to strong noise levels compared to various state-of-the-art methods, enabling accurate surface reconstruction from extremely noisy real data obtained by range scans. Finally, the simplicity and universality of our approach makes it very easy to integrate in any existing geometry processing pipeline. Both the code and pre-trained networks can be found on the project page (https://github.com/mrakotosaon/pointcleannet).

186 citations

Journal ArticleDOI
TL;DR: Simulations as well as real application results for EEG-signal noise elimination are included to show the validity and effectiveness of the proposed approach.
Abstract: In many applications of signal processing, especially in communications and biomedicine, preprocessing is necessary to remove noise from data recorded by multiple sensors. Typically, each sensor or electrode measures the noisy mixture of original source signals. In this paper a noise reduction technique using independent component analysis (ICA) and subspace filtering is presented. In this approach we apply subspace filtering not to the observed raw data but to a demixed version of these data obtained by ICA. Finite impulse response filters are employed whose vectors are parameters estimated based on signal subspace extraction. ICA allows us to filter independent components. After the noise is removed we reconstruct the enhanced independent components to obtain clean original signals; i.e., we project the data to sensor level. Simulations as well as real application results for EEG-signal noise elimination are included to show the validity and effectiveness of the proposed approach.

185 citations

Journal ArticleDOI
TL;DR: In this paper, a damping factor was introduced into traditional multichannel singular spectrum analysis (MSSA) to dampen the singular values to distinguish between signal and noise in seismic data.
Abstract: Multichannel singular spectrum analysis (MSSA) is an effective algorithm for random noise attenuation in seismic data, which decomposes the vector space of the Hankel matrix of the noisy signal into a signal subspace and a noise subspace by truncated singular value decomposition (TSVD). However, this signal subspace actually still contains residual noise. We have derived a new formula of low-rank reduction, which is more powerful in distinguishing between signal and noise compared with the traditional TSVD. By introducing a damping factor into traditional MSSA to dampen the singular values, we have developed a new algorithm for random noise attenuation. We have named our modified MSSA as damped MSSA. The denoising performance is controlled by the damping factor, and our approach reverts to the traditional MSSA approach when the damping factor is sufficiently large. Application of the damped MSSA algorithm on synthetic and field seismic data demonstrates superior performance compared with the conve...

185 citations


Network Information
Related Topics (5)
Image processing
229.9K papers, 3.5M citations
90% related
Feature extraction
111.8K papers, 2.1M citations
89% related
Image segmentation
79.6K papers, 1.8M citations
88% related
Convolutional neural network
74.7K papers, 2M citations
88% related
Support vector machine
73.6K papers, 1.7M citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,511
20222,974
20211,123
20201,488
20191,702
20181,631