scispace - formally typeset
Search or ask a question
Topic

Noise reduction

About: Noise reduction is a research topic. Over the lifetime, 25121 publications have been published within this topic receiving 300815 citations. The topic is also known as: denoising & noise removal.


Papers
More filters
Journal ArticleDOI
TL;DR: The performance assessment has been conducted by Monte Carlo simulation, also in comparison to previously proposed detection algorithms, and confirms the effectiveness of the newly proposed ones.
Abstract: This paper addresses adaptive radar detection of distributed targets in noise plus interference assumed to belong to a known or unknown subspace of the observables. At the design stage we resort to either the GLRT or the so-called two-step GLRT-based design procedure and assume that a set of noise-only data is available (the so-called secondary data). Detection algorithms have been derived modeling noise vectors, corresponding to different range cells, as independent, zero-mean, complex normal ones, sharing either the same covariance matrix (homogeneous environment) or the same covariance matrix up to possibly different (mean) power levels between primary data, i.e., range cells under test, and secondary ones (partially homogeneous environment). The performance assessment has been conducted by Monte Carlo simulation, also in comparison to previously proposed detection algorithms, and confirms the effectiveness of the newly proposed ones

162 citations

Journal ArticleDOI
TL;DR: This work proposes a novel SD (for static/dynamic) filter that effectively controls the underlying image structure at different scales, and can handle a variety of types of data from different sensors, and has good edge-preserving smoothing properties.
Abstract: Filtering images using a guidance signal, a process called guided or joint image filtering, has been used in various tasks in computer vision and computational photography, particularly for noise reduction and joint upsampling. This uses an additional guidance signal as a structure prior, and transfers the structure of the guidance signal to an input image, restoring noisy or altered image structure. The main drawbacks of such a data-dependent framework are that it does not consider structural differences between guidance and input images, and that it is not robust to outliers. We propose a novel SD (for static/dynamic) filter to address these problems in a unified framework, and jointly leverage structural information from guidance and input images. Guided image filtering is formulated as a nonconvex optimization problem, which is solved by the majorize-minimization algorithm. The proposed algorithm converges quickly while guaranteeing a local minimum. The SD filter effectively controls the underlying image structure at different scales, and can handle a variety of types of data from different sensors. It is robust to outliers and other artifacts such as gradient reversal and global intensity shift, and has good edge-preserving smoothing properties. We demonstrate the flexibility and effectiveness of the proposed SD filter in a variety of applications, including depth upsampling, scale-space filtering, texture removal, flash/non-flash denoising, and RGB/NIR denoising.

162 citations

Journal ArticleDOI
TL;DR: Numerical results show that the TNN is very effective in finding the optimal solutions of thresholding methods in an MSE sense and usually outperforms other noise reduction methods.
Abstract: In the paper, a type of thresholding neural network (TNN) is developed for adaptive noise reduction. New types of soft and hard thresholding functions are created to serve as the activation function of the TNN. Unlike the standard thresholding functions, the new thresholding functions are infinitely differentiable. By using the new thresholding functions, some gradient-based learning algorithms become possible or more effective. The optimal solution of the TNN in a mean square error (MSE) sense is discussed. It is proved that there is at most one optimal solution for the soft-thresholding TNN. General optimal performances of both soft and hard thresholding TNNs are analyzed and compared to the linear noise reduction method. Gradient-based adaptive learning algorithms are presented to seek the optimal solution for noise reduction. The algorithms include supervised and unsupervised batch learning as well as supervised and unsupervised stochastic learning. It is indicated that the TNN with the stochastic learning algorithms can be used as a novel nonlinear adaptive filter. It is proved that the stochastic learning algorithm is convergent in certain statistical sense in ideal conditions. Numerical results show that the TNN is very effective in finding the optimal solutions of thresholding methods in an MSE sense and usually outperforms other noise reduction methods. Especially, it is shown that the TNN-based nonlinear adaptive filtering outperforms the conventional linear adaptive filtering in both optimal solution and learning performance.

162 citations

Journal ArticleDOI
TL;DR: The existence of a minimizer of the authors' specialized criterion being proven, the convergence of the minimization scheme is demonstrated, and the obtained numerical results clearly outperform the main alternative methods especially for images containing tricky geometrical structures.
Abstract: We address the denoising of images contaminated with multiplicative noise, e.g. speckle noise. Classical ways to solve such problems are filtering, statistical (Bayesian) methods, variational methods, and methods that convert the multiplicative noise into additive noise (using a logarithmic function), apply a variational method on the log data or shrink their coefficients in a frame (e.g. a wavelet basis), and transform back the result using an exponential function. We propose a method composed of several stages: we use the log-image data and apply a reasonable under-optimal hard-thresholding on its curvelet transform; then we apply a variational method where we minimize a specialized hybrid criterion composed of an ? 1 data-fidelity to the thresholded coefficients and a Total Variation regularization (TV) term in the log-image domain; the restored image is an exponential of the obtained minimizer, weighted in a such way that the mean of the original image is preserved. Our restored images combine the advantages of shrinkage and variational methods and avoid their main drawbacks. Theoretical results on our hybrid criterion are presented. For the minimization stage, we propose a properly adapted fast scheme based on Douglas-Rachford splitting. The existence of a minimizer of our specialized criterion being proven, we demonstrate the convergence of the minimization scheme. The obtained numerical results clearly outperform the main alternative methods especially for images containing tricky geometrical structures.

161 citations

Journal ArticleDOI
TL;DR: A block thresholding estimation procedure is introduced, which adjusts all parameters adaptively to signal property by minimizing a Stein estimation of the risk.
Abstract: Removing noise from audio signals requires a nondiagonal processing of time-frequency coefficients to avoid producing ldquomusical noise.rdquo State of the art algorithms perform a parameterized filtering of spectrogram coefficients with empirically fixed parameters. A block thresholding estimation procedure is introduced, which adjusts all parameters adaptively to signal property by minimizing a Stein estimation of the risk. Numerical experiments demonstrate the performance and robustness of this procedure through objective and subjective evaluations.

161 citations


Network Information
Related Topics (5)
Image processing
229.9K papers, 3.5M citations
90% related
Feature extraction
111.8K papers, 2.1M citations
89% related
Image segmentation
79.6K papers, 1.8M citations
88% related
Convolutional neural network
74.7K papers, 2M citations
88% related
Support vector machine
73.6K papers, 1.7M citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,511
20222,974
20211,123
20201,488
20191,702
20181,631